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ABSTRACT

The geometric approach to intra-opus pattern discovery (in
which notes are represented as points in pitch-time space
in order to discover repeated patterns within a piece of mu-
sic) shows promise particularly for polyphonic music, but
has attracted some criticism because: (1) the approach ex-
tends to a limited number of inexact repetition types only;
(2) typically geometric pattern discovery algorithms have
poor precision, returning many false positives. This pa-
per describes and evaluates a solution to the inexactness
problem where algorithms for pattern discovery and inex-
act pattern matching are integrated for the first time. Two
complementary solutions are proposed and assessed for the
precision problem, one involving categorisation (hence re-
duction) of output patterns, and the second involving a new
algorithm that calculates the difference between consecu-
tive point pairs, rather than all point pairs.

1. INTRODUCTION

The discovery of repeated patterns within a piece of music
is an activity that manifests itself in a range of disciplines.
In music psychology, for example, listeners’ emotional re-
sponses to a piece exhibit distinctive behaviour at the be-
ginning of repeated sections [11]. In music analysis, an
awareness of the locations of motifs, themes, and sections,
and their relation to one another, is a prerequisite for writ-
ing about the construction of a piece [3]. Last but not least,
in music computing, algorithmic pattern discovery can be
used to define compressed representations [13] (e.g., the
numeric pitch sequence 67, 68, 67, 69, 69, 66, 67, 66, 68,
68 can be encoded as 67, 68, 67, 69, 69, and a translation
operation “-1”) and can act as a guide for the algorithmic
generation of new music [9]. In the interests of supporting
these multiple manifestations, it is important that the field
of music information retrieval continues to develop and re-
fine algorithms for the discovery of repeated patterns, and
continues to evaluate these against each other and human-
annotated ground truths.

There are two main representations in use for discov-
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ering repeated patterns within a piece of music (hereafter
intra-opus discovery [8]): (1) viewpoints [9] involve en-
coding multiple aspects of the music as strings of symbols
(such as the numeric pitches mentioned above, or dura-
tions, intervals between notes, etc.). This approach has
been applied mainly to monophonic music; (2) the geomet-
ric approach [14] involves converting each note to a point
in pitch-time space (see the pitch-time pairs in Figures 1A
and B). Higher-dimensional spaces are also possible (e.g.,
including dimensions for duration or staff number). The
geometric approach is well-suited to handling polyphonic
music, where few attempts have been made to apply view-
points. This paper focuses on the geometric approach;
specifically, ontime and morphetic pitch number [14] (C4
= C!4 = 60, D"4 = D#4 = D!4 = 61, E"4 = E4 = 62, etc.).

Before getting into more details of related work, it is
helpful to distinguish the terms pattern matching and pat-
tern discovery. Typically in pattern matching, there is a
short musical query and a longer piece (or pieces) of music,
and the aim is to match the query to more or less exact in-
stances in the piece(s) [2,17]. In intra-opus pattern discov-
ery there is no query, just a single piece of music, and the
requirement to discover motifs, themes, and sections that
are repeated within the piece [8, 14]. (One could say that
the purpose of a pattern discovery algorithm is to create
analytically interesting but hitherto unknown queries.) Pat-
tern discovery and pattern matching have been discussed
in the same papers [13], but nobody to our knowledge has
integrated discovery and inexact matching components in
one algorithm before. This full integration is one of the
contributions of the current work, and the other consists of
two complementary methods for improving the precision
of pattern discovery algorithms. The paper is organised
around describing and evaluating components of a new al-
gorithm called SIARCT-CFP, beginning at the end of the
acronym with “FP” for fingerprinting, then “C” for cate-
gorisation, and finally SIARCT, which stands for Structure
Induction Algorithm for r superdiagonals and Compact-
ness Trawler, which has been defined before [5] and for
which a Matlab implementation has been released. 1

2. THE INEXACTNESS PROBLEM

In reviewing the Structure Induction Algorithm (SIA) and
other geometric pattern discovery algorithms (see [14] or
[7] for details), Lartillot and Toiviainen noted that “this ge-

1 http://www.tomcollinsresearch.net
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Figure 1. (A) Bars 1-4 of the Theme from the first movement of Piano Sonata no.11 in A major K331 by Wolfgang
Amadeus Mozart (1756–1791). Labels give the ontime and morphetic pitch of the indicated note, and the box contains the
top-rated pattern output by SIARCT; (B) Bars 1-8 of Variation II from the same movement; (C) Symbolic musical similarity
of the pattern in (A) to the passage in (B), for two algorithms applied separately to the full texture and top staff only.

ometrical strategy did not apply to melodic repetitions that
presented rhythmic variations” [10, pp. 290-291]. To illus-
trate this problem we use a theme by Mozart, from “one
of the most overanalyzed pieces in the history of music
theory” [15, p. 160]. We are not particularly interested in
adding to discussions of the structure of the theme itself,
rather in the relation of the theme to a subsequent vari-
ation. If the passage in Figure 1B were appended to the
passage in Figure 1A and SIA applied to the single result-
ing point set, there would be little in the output to sug-
gest that the first two bars of Figure 1B contain a varia-
tion on the bounded pattern P in Figure 1A. The points
{(0, 67), (3, 69), (6, 66), (9, 68), (12, 65)} would appear in
the same output maximal translatable pattern (MTP, [14]),
as they occur under the same translation in Figure 1B, but
intervening points in the bounded pattern do not.

The pattern matching algorithm P2 [17] struggles with
rhythmic variation also: for a given pattern P and a larger
point set D, it returns all vector-frequency pairs (w,m)
such that m ≥ 1 points of P occur translated by w in
D. We implemented P2 and used it to match P (from
Figure 1A) to partial occurrences in D (Figure 1B). A sum-
mary of the output is plotted in Figure 1C, for both full-
texture versions of P and D and a restriction to the right
hand only (dashed and solid lines respectively). The maxi-
mal frequency M for pairs (w1,m1)i∈{1,2,...,s} correspond-
ing to each crotchet-note ontime in D is plotted, normalised
by the number of points in P , to give a measure of the sym-
bolic musical similarity of P to D over time. While there
are local maxima in the grey lines at bars 1, 2, and 5 (in the
second case because P2 is transposition-invariant and there

is a transposed pattern within P ), in general they have a rel-
atively small range, reflecting P2’s struggle to distinguish
genuine rhythmic variation from less related material.

Subsequent work on geometric pattern matching im-
proves upon P2 in terms of capturing rhythmic variation,
by representing durations as line segments [12, 17], by us-
ing the Hausdorff metric [16], or by converting to a tonal
space representation [1]. A recent fingerprinting (FP) ap-
proach [2] has the advantage of not relying on durational
information, and has options for transposition, time-shift,
and scale-factor invariance, as well as tolerance for the
amount by which the inter-onset interval of a pair of notes
is permitted to differ, compared to a corresponding note
pair in the original. The output of FP is a time series
S = St : t ∈ T , where the set T of successive time points
may or may not be uniformly spaced. The magnitude of
St, called the matching score, indicates the extent to which
an occurrence of the query begins at time t. In the trans-
position-invariant version, calculation of the matching score
time series begins by creating fingerprint tokens

[yj − yi, xj − xi], t, (1)

for locally constrained combinations of successive ontime-
pitch pairs (xi, yi), (xj , yj), in both a query pattern P and
the larger point set D. The pair in brackets in (1) is the
hash key, and t = xi is a time stamp. A scatter plot of
the time stamps of matching hash keys for P and D can be
used to identify regions of high similarity, which appear as
approximately diagonal lines. The matching score is cal-
culated by applying an affine transformation to the scatter
plot and binning (for details, see [2, 18]).
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An implementation of the FP algorithm was used to
match exact/inexact occurrences of P from Figure 1A to
D in Figure 1B, and the results are plotted in Figure 1C as
black lines. It can be seen that FP outperforms P2 at distin-
guishing the rhythmic variation in bars 1-2 of Figure 1B.
The use of locally constrained combinations of ontime-
pitch pairs, rather than one candidate translation vector ap-
plied to all points in P , is what enables the FP algorithm to
find a stronger match than P2.

Progress has been made in geometric pattern match-
ing techniques, but Lartillot and Toiviainen’s [10] criticism
of the discovery approach still stands, as nobody to our
knowledge has integrated an inexact matching technique
within a pattern discovery approach. We do so now, ac-
cording to the following steps, which define the “FP” part
of SIARCT-CFP:

1. Let P1, P2, . . . , PM be the output of a pattern dis-
covery algorithm, each Pi having at least one trans-
lationally exact repetition (two occurrences) in D;

2. For i = 1, 2, . . . ,M , run the FP algorithm [2] on
Pi and D, returning time points tPi

1 , tPi
2 , . . . , tPi

m at
which there may be further exact/inexact occurrences
of Pi, according to whether the value at tPi

j is greater
than some similarity threshold c ∈ [0, 1).

Underlying this integration of pattern discovery and pat-
tern matching is the following assumption, which we call
the translationally exact once (TEO) hypothesis:

If a piece of music contains multiple inexact
occurrences of a perceptually salient or ana-
lytically interesting pattern, then for some ma-
jority subset of the pattern (i.e., a subset con-
taining at least half of the points), there ex-
ists at least one translationally exact repetition
(i.e., at least two occurrences).

If the discovery algorithm outputs such a majority subset,
then the matching algorithm may be relied upon to output
further exact/inexact occurrences of the pattern.

As a case study, the new algorithm SIARCT-CFP was
run on the Nocturne in E major op.62 no.2 by Frédéric
Chopin (1810–1849). 2 This is a sensible choice of piece,
as it contains multiple variations of the opening theme (c.f.
Figures 2B and D for instance). Fourteen patterns were
output in total, one of which Q is bounded in Figure 2A,
and occurs translated three times (bars 27–28, 58–59, and
60–61). These occurrences are rated as very similar to Q,
with normalised matching scores close or equal to 1. The
time series output by the FP has mean .264 and standard
deviation .173, suggesting that the occurrence in Figure 2C
is not distinguishable from other unrelated material. This
makes sense, as although the contour and rhythm of the
melody are as in Q, the pitch intervals are different (see ar-
rows) and so is the accompaniment. We note, however, that

2 The first part of the algorithm, SIAR, ran with parameter r = 1.
Second, the compactness trawler (CT) ran with compactness thresh-
old a = 4/5, cardinality threshold 10, and lexicographic region type
[7]. Third, the categorising and fingerprinting (CFP) ran with similarity
threshold c = 1/2.
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Figure 2. Excerpts from the Nocturne in E major op.62
no.2 by Chopin. Dashed lines in (A) bound a pattern Q
discovered by SIARCT, which is used to match other inex-
act occurrences, with degree of exactness indicated in the
figure by numbers in [0, 1]. Pedalling omitted for clarity.

the FP algorithm could be extended further to incorporate
contour (up, down, same), as well as other viewpoints [9],
because of its use of locally constrained comparisons.

3. THE PRECISION PROBLEM

3.1 Categorisation by Pattern Matching

Now that we have integrated some inexact pattern match-
ing techniques into our pattern discovery approach, it is
possible to employ them for the purposes of categorisa-
tion, based on the idea that P2 [17] or FP [2] can be used
to compare two discovered patterns Pi and Pj in exactly
the same way as if Pi = P was a query and Pj = D was a
point set (or vice versa, as the measures are symmetric).

The second “C” in SIARCT-CFP stands for a categoris-
ation process, which will be described now. The purpose
of categorisation is to reduce an overwhelming amount of
information (e.g., output patterns) to a more manageable
number of exemplars. Here categorisation does not mean
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classifying patterns into an accepted/interesting category
versus a rejected/uninteresting category; rather it means
grouping similar patterns and representing each group with
one exemplar pattern. Our motivation for categorising the
output of SIARCT is to improve its precision: while the
precision and recall of pattern discovery algorithms has
been shown to benefit from compactness trawling, the pre-
cision is still quite poor [7]. For example, SIARCT out-
puts 76 patterns when run on Chopin’s op.62 no.2, which
can be reduced to fourteen patterns by using the following
categorisation process:

1. Let P1, P2, . . . , PM be the output of a pattern dis-
covery algorithm, sorted descending by a rating of
perceived pattern importance [6], or some other or-
dering. Let J = {1, 2, . . . ,M} index the patterns
that are uncategorised currently;

2. For the most important uncategorised pattern, index
i = min(J), calculate the maximum normalised mat-
ching scores s(Pi, Pj) for each j ∈ J , j "= i;

3. For each similarity score s(Pi, Pj) that is greater
than some specifiable similarity threshold c ∈ [0, 1),
place pattern Pj in the category for which Pi is the
exemplar, and remove j from J ;

4. Repeat steps 2 and 3 until either J has one element
k, in which case define Pk to be an exemplar with
category membership Pk, or otherwise J is empty;

5. For the purposes of algorithm evaluation, return only
the exemplars Pi(1), Pi(2), . . . , Pi(m).

Depending on the choice of c, m # M . The categorisa-
tion process can be visualised with two similarity matrices
(Figure 3). The matrix in Figure 3A contains the maxi-
mum normalised matching scores for each pair of 76 out-
put patterns for Chopin’s op.62 no.2, ordered as in step 1
above. The matrix in Figure 3B is a permutation of 3A,
showing the categorised patterns (c = .5) in their four-
teen categories, bounded by white squares. The fourth
square from top-left in Figure 3B represents the category
for which Q in Figure 2A is the exemplar. The fivefold
(5.43 ≈ 76/14) reduction in output achieved by pattern-
matching categorisation may well improve precision: as
discussed, the theme annotated in Figure 2A survives the
categorisation process, and so do all of the repetitions in
this piece lasting four or more bars (results not shown).
Pattern-matching categorisation also constitutes a novel and
interesting use of the FP algorithm [2]. It should be noted
that choosing too low a value for c could lead to over-
reduction and filtering out of analytically interesting pat-
terns. For instance, the first two squares in Figure 3B show
considerable variegation, suggesting that some interesting
subcategories may be overlooked.

3.2 Consecutive Points and Conjugate Patterns

The final novel contribution of this paper is to evaluate the
SIARCT pattern discovery algorithm [5] against a collec-
tion of music containing repeated sections, and to com-
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Figure 3. (A) Pairwise symbolic musical similarities
(ranging from white for dissimilar to black for identical)
for 76 patterns discovered by SIARCT in Chopin’s op.62
no.2, ordered by a rating formula for perceived salience;
(B) Permutation of the above matrix, with white lines indi-
cating the results of categorising into fourteen groups.

pare its performance (especially precision) to SIA [14] and
SIAR [5]. SIA outputs thousands of patterns for Chopin’s
op.62 no.2 (and other pieces of music [7]), so it is nec-
essary to develop a more parsimonious pattern discovery
algorithm for use as input to the categorisation and finger-
printing components described above (e.g., SIARCT out-
puts only 76 patterns for Chopin’s op.62 no.2).

It has long been thought that in order to discover re-
peated patterns within a geometric representation D of a
piece, it is necessary to calculate the difference between
each pair of n points (n[n−1]/2 calculations in total), as in
SIA [14]. Unlike SIA, the first step of SIARCT is to calcu-
late the difference between consecutive pairs of points only
(n − 1 calculations). Some exhaustive pairwise compar-
isons are still made in the second step, but for small, non-
overlapping subsets of D, meaning that the total number
of difference calculations performed by SIARCT is far less
than n[n−1]/2, in all but one degenerate case. 3 The third
step of SIARCT makes use of a concept known as conju-
gate patterns [5]: if a pattern containing l points occurs m
times in a point set, then there exists in the same point set
a pattern consisting of m points that occurs l times. The
fourth step calculates MTPs for each vector in a list L. As
a consequence of manipulating conjugate patterns, the vec-
tors corresponding to repeated sections should be at or near

3 Please see [5] for the algorithmic details.
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the top of L. So for this step we could: (1) distribute each
MTP calculation to parallel processors, and/or; (2) output
MTPs dynamically for the user to browse, whilst calcula-
tion of the remaining MTPs continues. The main claim is
that SIARCT will have much smaller output than SIA, with
minimal or no negative impact on its performance as mea-
sured by precision, recall, and robust versions of these met-
rics [4]. The compactness trawler (CT) part of SIARCT is
exactly as in [7], so is not addressed again here.

SIA, SIAR, and SIARCT were run on point-set repre-
sentations of movements by Ludwig van Beethoven (1770–
1827) and Chopin listed in Figure 4A. SIARCT ran with
compactness threshold a = 1, and points threshold b = 50.
This means that only patterns containing 50 points or more
were returned, and they had to have maximal compactness
of 1. The parameter values make sense in terms of try-
ing to discover repeated sections. To make the evaluation
fair, we also filtered the results of SIA and SIAR, returning
only those patterns that contained 50 points or more. In the
results, these versions of SIA and SIAR are referred to as
SIA (50+) and SIAR (50+).

3.3 Evaluation Results

Figure 4B shows the log of the total number of patterns
output by each algorithm for each movement/piece. It sup-
ports the claim that SIAR has a much smaller output than
SIA. It is difficult to see from Figure 4B, but the same ob-
servation applies to the filtered versions of each algorithm,
SIAR (50+) and SIA (50+). The number of patterns output
by SIARCT is several orders of magnitude less than that
of any other algorithm. Figure 4C and Figure 4E show that
compared with SIA’s performance, SIAR is not negatively
impacted by restricting calculations to consecutive pairs of
points. The establishment precision and establishment re-
call for SIAR and SIA are comparable across all pieces.

Overall, the most effective algorithm is SIARCT (see
Figure 4C and Figure 4E). For half of the pieces, it dis-
covers all ground truth patterns exactly (Figure 4F). When
SIARCT fails to discover a ground truth pattern exactly, of-
ten this is due to a difference between the repeated section
as written in the score, and the repeated pattern as heard
in a performance. For instance, in the fourth movement
of Beethoven’s op.7, bars 65–70 are marked as a repeated
section, and this is included in the ground truth. The re-
peated notes extend beyond these bars in both directions,
however, creating a longer repeated pattern in a perfor-
mance. SIARCT discovers the latter, performed pattern,
which reduces exact precision and recall. The more ro-
bust establishment metrics are not much reduced (e.g., see
Figure 4E), and arguably discovering the performed pat-
tern is preferable from a music-perceptual point of view.

4. DISCUSSION AND FUTURE WORK

This paper identifies two valid reasons why the geomet-
ric approach to intra-opus pattern discovery has attracted
some criticism—namely (1) the approach extends to a lim-
ited number of inexact repetition types only, and (2) typ-

ically geometric pattern discovery algorithms are impre-
cise, returning many false positives results. A new algo-
rithm called SIARCT-CFP has been described and evalu-
ated component-wise, in an attempt to address these crit-
icisms. It is the first geometric pattern discovery algo-
rithm to fully integrate an inexact pattern matching compo-
nent (the fingerprinting algorithm of [2]), and this match-
ing component was shown to be effective for retrieving
inexact occurrences of themes in pieces by Mozart and
Chopin. The comparison of the FP algorithm [2] to a base-
line pattern matching algorithm P2 [17] demonstrated that
the former was superior for a particular example. In gen-
eral it may be preferable to have two or more pattern match-
ers at one’s disposal, however, as the number of variation
techniques is large, and trying to account for them all with
one algorithm will likely produce false positive matches.

The precision metrics were of particular interest to us
in the comparative evaluation of SIARCT [5], SIAR [5],
and SIA [14], as we claimed that SIARCT could achieve
levels of precision comparable to SIA and SIAR, without
harming recall. This claim was supported by the evaluation
results, although in future work it will be necessary to see
if similar results are achieved for ground truths containing
shorter patterns than repeated sections.

Our translationally exact once (TEO) hypothesis (see
Section 2) was borne out in the case study of Chopin’s
op.62 no.2, where Q (Figure 2A) occurred exactly under
translation (bars 27–28, 58–59, and 60–61), and its con-
tents were sufficient for use as a query to retrieve less exact
versions such as in bars 9 (Figure 2B) and 25 (Figure 2D).
For the case study of the Theme section and Variation II
from Mozart’s K331, SIARCT was able to discover per-
ceptually salient patterns such as P in Figure 1A, which
recurs in bars 5-7 of the Theme section (not shown). As the
TEO hypothesis holds in both cases, future work should
focus on finding counterexample pieces, as this will help
to refine and improve our underlying assumptions and en-
suing algorithms. Future work will also attempt to show
users/developers the differences between themes and par-
tial matches, and to identify variation techniques (triplets,
minore, etc.) automatically.

5. ACKNOWLEDGEMENTS

This paper benefited from the use of Kern Scores, and help-
ful discussions with David Meredith. We would like to
thank four anonymous reviewers for their comments. This
work is supported by the Austrian Science Fund (FWF),
grants Z159 and TRP 109.

6. REFERENCES

[1] T. Ahonen, K. Lemström, and S. Linkola:
“Compression-based similarity measures in symbolic,
polyphonic music,” Proceedings of the Interna-
tional Symposium on Music Information Retrieval,
pp. 91–96, 2011.
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