
An archive-exploration system for the
Hunting Songs of the Lakeland Fell Packs

Mary Emmett∗
mh687@york.ac.uk
Department of Music
University of York

UK

Zongyu Yin
zy728@york.ac.uk

Department of Computer Science
University of York

UK

Tom Collins
tom@musicintelligence.co

Department of Music,
University of York, UK;

Music Artificial Intelligence
Algorithms, Inc., USA

ABSTRACT
From everyday users to expert archivists, there is a keen interest in
being able to search digital library catalogues via domain-specific
languages and queries. This paper presents a proof-of-concept sys-
tem that enables library users to searchmusically for songs or pieces
that match to sung, hummed, or typed note queries. We chose to
work with a corpus of 80 Lakeland Hunting Song tunes (Items) that
have been collected recently, and for which the archivist wanted to
make a resource that was easily searchable in terms of its musical
content. Existing systems such as that at folktunefinder.com are ro-
bust to rhythmic changes but not to missing or interpolated notes,
so we employed a geometric hashing approach as the basis for
determining matches and as a potential improvement on existing
work. An evaluation indicates that the system works quickly and
effectively. We discuss some of the examples arising from its use,
and indicate how future work building on this proof-of-concept
system may make it possible to search other collections of songs
or pieces in a more natural, musical way. Our archive-exploration
system is available for trying out at https://hse.glitch.me.

CCS CONCEPTS
•Applied computing→ Sound andmusic computing; • Infor-
mation systems→ Content analysis and feature selection; Query
representation; Search interfaces;Retrieval efficiency; •Com-
puter systems organization→ Real-time system architecture.

KEYWORDS
domain-specific queries, music search, geometric hashing,
ethnomusicology, folk music, Node.js

ACM Reference Format:
Mary Emmett, Zongyu Yin, and Tom Collins. 2021. An archive-exploration
system for the Hunting Songs of the Lakeland Fell Packs. In 8th International
Conference on Digital Libraries for Musicology (DLfM2021), July 28–30, 2021,

∗All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8429-2/21/07. . . $15.00
https://doi.org/10.1145/3469013.3469014

Virtual Conference, GA, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3469013.3469014

1 INTRODUCTION
Computational approaches to folk music research are well estab-
lished, and have been used to shed light on stability and variation in
folk song transmission (e.g., [16]). Recent research [13] has focused
on the Hunting Songs of the English Lakeland Fell Packs – a folk
song tradition that up until now has not been the sole focus of any
academic study.1 As inidcated and defined in Table 1, this research
involved collecting 313 songs, which correspond with 147 tunes.
When attempting to catalogue the collection for musical analysis
it became clear that there was no existing system that could be
used to upload, organise, and store the tunes so that they might
be a) searched and b) explored for musically interesting correspon-
dences. Currently, this collection of songs is detailed over various
spreadsheets, lyrics in word documents, and tunes in the music
notation software Sibelius. To date, it has not been possible to create
a convenient way of systematically discovering new knowledge
such as which songs share a particular tune, and this is a cause
of frustration to the current authors, but also to other ethnomu-
sicologists and archivists seeking a more coherent and powerful
archive-exploration approach.

Beyond the collection phase of this archiving project, we are
looking to develop a system that would solve this problem for future
music researchers and collectors, part of which is to create an appli-
cation which could be integrated into existing library catalogues so
that tunes might be made musically searchable. The current paper
aims to establish the feasibility of such a programme, and describes
the prototype system we have built. In the following sections, we
introduce Lakeland Hunting Songs in more detail and by example,
we review the literature on music search, and then describe the
archive-exploration system we have built and its quantitative and
holistic evaluation.

2 LAKELAND HUNTING SONGS
Following its inclusion in The National Song Book [24], “John Peel”
– the most famous Lakeland Hunting Song – was once sung in
homes and schools across England, and yet this singing tradition has
not been the subject of much academic enquiry. Emmett [13] sought
to address this gap in folkmusic and ethnomusicological scholarship
through a study of the history, texts, and tunes of Lakeland Hunting

1Other work does cover Lakeland Hunting Songs in some detail, but they are not the
sole focus [1]. Other publications that include some information about the tradition
include [22], [21] and [20].

1

https://www.folktunefinder.com
https://hse.glitch.me
https://doi.org/10.1145/3469013.3469014
https://doi.org/10.1145/3469013.3469014
https://doi.org/10.1145/3469013.3469014

DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA Emmett, Yin, and Collins

Table 1: Definitions and numbers of instances of Song, Tune,
and Item in the corpus. The terms are consistent with [13].

Label Number Definition

Song 313 A text which is conceived with the intention
of being sung; most often this refers to a
combination of a text and a tune.

Tune 147 The music used for a particular song, which
may or may not have a known tune name.

Item 80 Tunes from the corpus used in the current
archive-exploration project.

Songs. The singing tradition remains very much alive and, over
a period of six years, 313 songs were collected from a variety of
sources, many from live recordings made at so-called “sing-songs”.

Since the 2005 HuntingWith Dogs Act, fox hunting is now illegal,
but Lakeland Hunting is very different from common perceptions
of the “sport” and is often described as “hunting the hard way”. The
Cumbrian terrain is mountainous and craggy, so the hunts are not
mounted (i.e. followed on horseback) – those following the hunt
do so on foot. Lakeland Hunting is also not generally considered
to be an elitist activity and emerged as a form of pest control as a
service for local farmers [23].

Songs have always been an integral part of the Lakeland Hunting
tradition. These poorly-funded hunts [4] were, and continue to be,
reliant on the fundraising activities of the social side of the hunt,
of which singing makes up a significant part.

The songs themselves are rather eclectic in nature and, it would
seem, almost any song could be termed a “Lakeland Hunting Song”
if it were performed at a hunt sing-song. However, the majority
of the songs are concerned with “Lakeland” and/or “Hunting” in
some way, or they contain some sort of countryside connection
[13]. Though the songs were once often accompanied (by piano,
melodeon, or any other instruments that happened to be at hand),
this is no longer the case and performances are now generally
unaccompanied. Furthermore, the tunes used by these songs are
not unique to this tradition, most often deriving from national
hunting songs or popular songs of the 20th century.

2.1 Music Examples
Of the 147 tunes in this entire collection of Lakeland Hunting Songs,
140 are in major keys with the remaining seven (for eight songs) in
modal keys. We used 80 items (Table 1) in the present work because
they were readily available in MusicXML format. The transcriptions
tend to represent the most common version heard of the many
“borrowed” tunes used by this tradition, though common variants
are sometimes included on ossia staves, as can be seen in the tune
“Hark Forrad” (Figure 1). This is the most commonly used tune
within the tradition, with 34 songs likely employing it. Part of what
makes this tune so popular and useful is it can be used in a recitative
style, as rhythms can be freely altered to fit any given underlay.

A “typical” version of this tune is given in Figure 2. “Hark For-
rad” is arguably the most complicated example of a tune in this
collection as it can be rendered in so many different ways. It was
therefore important for the search system (see Section 3) to be able

(a) (b)

(c)

(d) (e)

6

8&

#

&

√

œ

J
œ œ

¿

j
¿ ™ œ œ œ ¿ ™ ¿

¿

J ¿ ™
œ œ œ œ

j
¿ ¿

¿

J

œ
œ œ ¿ ¿ ¿ œ

œ œ œ ¿

J

œ œ œ

œ œ ™ œ œ œ œ

¿ ™

œ œ
œ ¿ ™

œ œ
œ œ ™ œ œ œ

œ ™ œ œ œ
œ ™ œ œ

J

œ œ œ œ œ œ œ ™ œ

Figure 1: General structure of “Hark Forrad”. (This and all
other original transcription by Mary Emmett.)

to return “Hark Forrad” as a result if queries contained common
variants. Some examples of such common variant queries are given
in Figure 3.

    
  

   
    
    

    
   

    
  
 









 

 





2

Copyright	©	

Figure 2: Typical version of “Hark Forrad” – without ossia
stave variations.

Figure 3: (A) Example query using option (a) from the os-
sia stave seen in Figure 1; (B) Example query using option
(c) from the ossia stave seen in Figure 1; (C) Example query
of an altered rhythm based on actual underlay from a song.
This corresponds with bars 3-4 of Figures 1 and 2.

As mentioned previously, most of the tunes used in this tradition
are borrowed from popular culture. A good example of this is “Forty
Shades of Green” (Figure 4), perhaps best known as a song by
Johnny Cash. This tune was intended by the lyricist to be used
for the song “Our Johnny”, but a local composer then wrote an
original tune as an alternative setting for the song. The resulting,
most commonly used tune is a mixture of the two. With regards to
the search system, it will be interesting to see if entering a query

2

An archive-exploration system for the Hunting Songs of the Lakeland Fell Packs DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA

from “Forty Shades of Green” brings up the tune which is now used
when performing “Our Johnny” (Figure 5).

Figure 4: Transcription of “Forty Shades of Green” as per-
formed at a Lakeland Hunting sing-song in 2015.

4

4&

#
#

&

#
#

œ

j

œ
œ œ œ œ œ

‰
œ

J

œ
œ
œ œ œ ‰

œ

J

œ œ œ œ
œ œ œ œ œ

œ œ œ œ

‰ œ

j

œ
œ œ œ œ œ

‰
œ

J

œ
œ
œ œ œ ‰ œ

J

œ œ œ œ
œ œ œ

œ œ œ œ œ œ ™

Figure 5: Transcription of the tune for “Our Johnny”.

Finally, there are some tunes with slightly awkward rhythms, or
where the time signature changes partway through. An example
of this is “First of May”, which would, in the original transcription,
appear as in Figure 6A. The rhythm in this tune should be swung,
so the tune actually sounds as in Figure 6B with all the triplet
rhythms written out. Neither music notation software nor a music
search/exploration system would “know” to swing the rhythm
without being programmed to interpret such textual instructions,
but it was our hope that the system we created would be robust
enough to deal with varied rhythmic inputs of this tune, whether
swung or not.

Figure 6: (A) Extract from the original transcription of “First
of May”; (B) “First of May” with swung rhythm fully no-
tated.

3 MUSIC SEARCH
Music search has been a topic of sustained and diverse work over
the decades, one of the reasons being that there are many different
expectations users have of a music search system, and also many
different ways a system might capture and represent queries, as
well as mechanisms for retrieving and then representing results
[2, 3, 14, 26–28, 30].

Even in our single archive-exploration system, as we aim to
support a range of expertise from everyday users to professional
archivists, we see potential for many different forms of query cap-
ture. For instance, an everyday usermight prefer to hum a query and
not want to “tidy it up” before hitting search, whereas an archivist
might be exploring relationships between songs and want to be
sure their queries are entered accurately.

One of the earliest, pre-digital computing examples we know
of music search is Barlow and Morgenstern’s A Dictionary of Mu-
sical Themes [3]. As well as containing 10,000 tune excerpts from
composers in alphabetic order, it finishes with an index via which
tunes can be queried based on pitch-class sequences. In terms of
the lookup mechanism, it is similar to modern-day music search
systems such as FolkTuneFinder [28] and Musipedia [25].

The pitch or pitch class-based approach to lookup is powerful
because it is robust to rhythmic variations (essentially, it ignores
rhythm), and in both [3, 28] there are methods to ensure transposi-
tion invariance. But a drawback is that it is not robust to variations
in the form of interpolated, missing, or varied notes. For instance, if
we used the opening six notes of the general form of “Hark Forrad”
(D4, G4, A4, G4, A4, B4, Fig. 1) to query a system that contained
the typical version of the tune (beginning D4, D4, G4, G4, G4, . . .,
Fig. 2), a pitch-sequential approach to lookup would be unlikely
to identify the query as “Hark Forrad”, because the sequences are
not very similar to one another due to the interpolated notes in
the typical version compared to the general version. Even Parson’s
coding of directions between adjancent notes, as used in several
modern-day music search systems (e.g., [17]), is vulnerable to in-
terpolated, missing, or varied notes. This is a drawback because
from music-theoretic and music-perceptual points of view, the two
excerpts of music from the openings of Figures 1 and 2 are similar
to one another in terms of their use of pitches at corresponding
rhythmic locations. One might say their “musical skeletons” are
the same.

Computational methods that are capable of representing such
similarity include derived viewpoints [10], geometric representa-
tions [8, 15, 26], and geometric hashing in particular [2, 6, 27].
Geometric hashing entails analysing and storing pitch and time
comparisons between pairs or triples of notes that are appropriately
local to one another (local in pitch and time). The advantage of this
approach is that when the musical skeleton of a query is highly
similar to something in the dataset being queried, the match can
still be identified and returned, irrespective of a certain amount
of interpolation, removal, or variation of notes between the two
excerpts. In what follows, we explore the use of geometric hashing
to build our archive-exploration system, because: (1) it is novel in
this context, and to our knowledge is the first instance of geometric
hashing being used for music-archival search/exploration; (2) it has
the potential to support most of the use cases stated or inferred
from Figures 1-6 – a claim that we return to assess in the evaluation.

4 DESIGN AND IMPLEMENTATION OF OUR
ARCHIVE-EXPLORATION SYSTEM

An important property of any search system is that it returns rel-
evant results quickly. Similar to previous research, we use a cus-
tomised hash table to store geometric comparisons between pairs of

3

DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA Emmett, Yin, and Collins

notes that are appropriately local to one another in pitch and time
[2, 6, 27]. A hash table is a data structure that provides constant-
time insertion and finding of an entry [29]. Remarkably, the larger
one’s collection of entries becomes, the time required to insert or
find an entry in that collection remains fixed and very short. We
use JavaScript/Node.js to implement our system [7], where the reg-
ular JavaScript object is designed to support insert and find in this
way.2 The method relies on creating (often-inscrutable) hashes of
entries, which are large numbers that should uniquely identify an
entry’s location in the hash table. Our customisation relates to the
information stored when the same entry is encountered twice or
more, which occurs when the same pitch and time difference are
encountered multiple times across an input music dataset. As such,
we store the piece id and the time in the piece where the pitch and
time difference was encountered.

4.1 Hash Construction
The concept of making pitch and time difference comparisons be-
tween pairs and triples of notes goes back to [18]. Its being done
in a tractable way (as the potential comparisons grow exponen-
tially with the number of notes in a piece) and on an industrial
scale for audio input are due to [27]. The idea of moving back to a
symbolic representation instead of peaks in a spectrogram before
making the comparisons is due to [2], where improvements are
also achieved in relation to inexact matching (e.g., transposition
and tempo invariance) that hark back to [18]. The current work
remains with or maps down to a symbolic representation in order
to construct hashes, incorporating transposition invariance but
leaving tempo invariance to one side for now, although it would be
straightforward to extend to tempo invariance in future.

As well as constructing hashes for any input query on-the-fly,
hashes are constructed for each piece in a dataset in advance. The
MusicXML representation of each of our 80 songs is converted to a
set of (ontime, MIDI note number)-pairs.3 Suppose the sets A and
B each contain two points:

A = {(xA1 ,y
A
1), (x

A
2 ,y

A
2)} (1)

B = {(xB1 ,y
B
1), (x

B
2 ,y

B
2)} (2)

where points are ordered increasing by ontime, and by MIDI note
number (MNN) if they have the same ontime, so xA1 is the ontime
of the first note in A and yA1 the MNN. We aim to quantify the
similarity between the two sets mathematically and perceptually.
The similarity is calculated considering the ontime and pitch di-
mensions separately. Starting with the pitch dimension, we can
obtain the pitch difference, denoted as pd for each set:

pdA = xA2 − x
A
1 (3)

pdB = xB2 − x
B
1 (4)

where closer values of pdA and pdB indicate higher similarity be-
tweenA and B in the pitch dimension. We also calculate the interval

2https://v8.dev/
3Ontime is the start time of a note counting in crotchet beats, with 0 for bar 1 beat 1
[5].

between ontime values, denoted:

tdA = yA2 − y
A
1 (5)

tdB = yB2 − y
B
1 (6)

where, again, closer values of tdA and tdB indicate higher similarity
between A and B in the ontime dimension. We then encode pd and
td into strings for valid hash entries found in a set. This string
consists of two parts:

(1) a + or − sign followed by two digits, indicating the pitch
difference pd ;

(2) a float number rounded to one decimal place, indicating the
time difference td .

For example, the string for the last two notes of Figure 6A would
be "-020.5", because the interval from E4 to D4 is −2 MNNs, and
the time difference between the E4 and D4 is 0.5 crotchet beats.

4.2 Storage and Retrieval
Here we describe how to restrict attention to pairs of notes (or
points) that are local to one another in pitch and time. With the
collected MusicXML files, we process them individually into a
set of (ontime, pitch)-pairs. Then we apply the following process:

pts ← the set o f points
npts ← pts .lenдth
tMin ← 0.1; tMax ← 10; pMin ← 1; pMax ← 12
entries ← []
for (i = 0; i < npts − 1; i + +) do
v0 ← pts[i]
j ← i + 1
while (j < npts) do
v1 ← pts[j]
apd ← abs(v1.pitch −v0.pitch)
td ← v1.ontime −v0.ontime
if ((td > tMin) ∧ (td < tMax) ∧ (apd ≥ pMin) ∧ (apd ≤
pMax)) then

entry ← create_entry(v0,v1)
entries .insert(entry)

end if
if (td ≥ tMax) then

j ← npts − 1
end if
j + +

end while
end for

So the process consists of a nested loop to confirm a valid set of two
points, which is then encoded as the string of a hash entry with the
aforementioned format. Starting with the outer loop where we have
the first pointv0, the inner loop checks through the points following
v0, during which the second pointv1 can be confirmed once a point
satisfies the conditions: pd is in the range between pMin (minimum
pitch difference, e.g., 1) and pMax (maximum pitch difference, e.g.,
12); td is in the range (not equal to) between tMin (minimum time
difference, e.g., 0.1) and tMax (maximum time difference, e.g., 10).
If the conditions fail, particularly when time difference exceeds the
maximum, the loop breaks. The encoded hash entry string then

4

https://v8.dev/

An archive-exploration system for the Hunting Songs of the Lakeland Fell Packs DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA

Table 2: Success rate and execution times of the archive-
exploration system for opening and chorus queries. Execu-
tion times are reported for a MacBook Pro running Node.js
on OS X 10.14 with a 2.4 GHz processor and 16 GB RAM.

Query Type Top 10 Top 3 Mean (std) time (ms)

Opening 86% = 69/80 53% = 42/80 10.9 (4.3)
Chorus 90% = 9/10 40% = 4/10 16.9 (4.3)

becomes the key of a (key, value) pair in a JavaScript object. The
value part of this pair consists of a pair of parallel arrays, storing:
(1) where in terms of ontime the pair of notes A was encountered
(uses xA1) in the first array; (2) the song name in the corresponding
location of a second array. This leads to a JavaScript object, call it
lookup, which we store as a JSON file on the server.4

With an incoming query, we take the point-set representation
and apply the same method as above to obtain valid hashes and
construct (key, value) pairs. Each query key (formed from B and its
analysis in Equations 1-6, say) is used to probe lookup, and may
match to some key (formed from A and its analysis in Equations 1-
6), returning a point set C = {(a1,b1), (a2,b2), . . . , (aM ,bM)} of
(dataset ontime, query ontime)-pairs where there are matching
pitch and time differences. In a scatterplot of such data, true posi-
tives appear as (approximately) diagonal lines. In order to analyse
this data to obtain the topm matches, therefore, it is necessary to
apply a transformation (e.g., (ai ,bi) → (ai ,ai −bi)) and calculate a
histogram over this transformed data. If the query itself led to the
formation of k valid hashes, then we can calculate the relevance
of the match by dividing the observed frequency h in a histogram
bin by k . That said, sometimes due to choosing a large bin size
or having polyphonic data where there can be multiple matches
simultaneously (not an issue for our melodies here), h exceeds k .
To address this, we map any relevance values in excess of 1 back
down to 1 before returning search results to the user, but this can
create a “ceiling effect” with relevance scores, which requires more
attention in future.

5 EVALUATION
As is standard when assessing music search systems [e.g., 2], we
begin the evaluation of our system with some statistics on its suc-
cess rate for finding certain types of query and the execution taken
to do so, contained in Table 2.

The “Opening” query type row of the table shows the relative
success or failure (and execution time) of queries consisting of the
first six notes of each of the 80 items (“opening query” hereafter). If
we consider success to be when the item from which the opening
query is taken appears among the top ten returned results, then
our system has a success rate of 86% (= 69 successes / 80 items); if
we consider success to be limited to the top three returned results
only, then the system has success rate 53 percent (= 42 successes /
80 items).

In terms of execution time, results for the 80 opening queries
were returned in an average 10.9 ms (standard deviation 4.3 ms),

4Approximately 2 MB in size for 80 songs, but this could be made considerably smaller
by utilising shorter IDs for song names.

substantiating our claim that this is a quick method. In a client-
server setup, the main bottleneck is not the querying itself but the
retrieving and excerpting of score snippets to return to the client.

The “Chorus” query type row of the table shows corresponding
information for queries consisting of the first six notes of the chorus
of each of ten items (“chorus query” hereafter). The first author
annotated these locations for ten of the most prominent Hunting
Songs, because (1) choruses are as, if not more, important than
openings when considering the identity of these songs and how
they are discussed among the hunting community, and (2) so that
we could give some indication of the generalisability of the results
reported for opening queries.5 If we consider success to be when
the item from which the chorus query is taken appears among
the top ten returned results, then our system has a success rate of
90% (= 9 successes / 10 items); if we limit to the top three returned
results, then the system has success rate 40 percent (= 4 successes /
10 items). Execution times are similarly quick – there should not
and does not appear to be a substantial difference in execution time
when a query occurs partway through rather than at the start of a
dataset song.

We will comment on the success rates and cases of failure further
in the discussion, but for now suffice it to say that we are satisfied
with this level of performance of our archival-exploration system
for short, “exact” queries. This analysis says nothing, however, of
the system’s ability to return relevant results when queried with
tune variants, so we go on to report on case-by-case results for such
scenarios.

One of the main things we wanted this system to be able to cope
with was common tune variants in both pitch and rhythm, and we
can report that this has been successful in many cases. When we
take the “Hark Forrad” tune as an example, Figures 7, 8 and 9 show
the query-result pairs for the examples laid out in Figures 3A, B,
and C, respectively. In the first two examples it is the pitch which is
altered and yet “Hark Forrad” comes back as the first return in both
instances. In the third example, when there are rhythmic alterations,
the correct tune is returned second, which the first author suggests
is still an acceptable degree of accuracy.

Figure 7: Results when testing the system with the example
query from Figure 3A.

When attempting to test the system with a query taken from
“Forty Shades of Green” (see bars 12-14 of Figure 4) we encountered
5We would probably extend these annotations to the entire collection in future.

5

DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA Emmett, Yin, and Collins

Figure 8: Results when testing the system with the example
query from Figure 3B.

Figure 9: Results when testing the system with the example
query from Figure 3C.

a few problems. We used this query because it is the most similar to
“Our Johnny” (see bars 6-7 of Figure 5). When inputting the query,
it was not possible to dot the second C♯ (see Figure 10), but when
pressing search we were pleased to see that “Our Johnny” came up
as the fifth returned result. “Forty Shades of Green” did not appear
in the top ten results, however, despite the only difference from the
original transcription being a missing dot.

Figure 10: Initial example query from towards ’Forty Shades
of Green’.

The problem with inputting the desired query is due to the
over-simplicity of our system’s note input method, which we will

return to in Limitations and Future Work (Section 6.1): dotting the
second C♯ in Figure 10 would cause an overflow of the (default and
currently uneditable) 4-beat bar with no upbeat, and so the stave
notation rendering issues an error message. The system is not yet
sophisticated enough to use tied notes to deal with seemingly “too
many” beats being added to a bar.

A temporary workaround is to insert a 3-beat rest at the start
of the query; then dotting the second C♯ does not overflow the bar
(Figure 11). Then “Forty Shades of Green” is the first result (again,
see Figure 11), but now “Our Johnny” does not appear in the top ten.
This is perhaps not that surprising as while to a human listener the
two tunes are related, there are likely enough pitch and rhythmic
differences between the two for “Our Johnny” to not be returned
within the top ten results.

Figure 11: Example query from“Forty Shades ofGreen”with
the anacrusis included.

Inputting the straight rhythm for “First of May” (see Figure 12)
returned the intended tune as the first result, but finding a way
to input the swung rhythm without being able to sing it was a
challenge. Some further development work by the third author to
extend the query syntaxmade it possible to input triplets to a degree,
but more work is required to be able to mix crotchet and quaver
triplets within the same beat. Nonetheless, we were able to get the
start times and pitches in the correct locations (Figure 13), and even
though the durations are not as they would be in a performance,
note durations themselves are not taken into account by the search
system anyway. The triplet query did not return “First of May”
within the top ten results. We will discuss this further in Section 6.1
on Limitations and Future Work.

6 DISCUSSION
Music search is a topic that has a long and varied history in terms
of potential use cases, attracting the attention of and having ramifi-
cations for (ethno)musicologists, archivists, music informaticians,
computer scientists, music psychologists and neuroscientists, mu-
sicians, as well as “everyday users” who want to hum a tune that
is in their head and be shown “relevant answers”. In the current
paper, we have focused on a subcategory of music search – the
development of an archive-exploration system, whose range of po-
tential users is still wide: initially song and music collectors might
use such a system, but also archivists working within music, as
this system would make it possible to search musically for items

6

An archive-exploration system for the Hunting Songs of the Lakeland Fell Packs DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA

Figure 12: Results when testing the system with the first 12
notes of “First of May”.

Figure 13: Triplet query example for “First of May”.

within a library catalogue, should the sheet music be available in
the appropriate digital format (e.g., MusicXML or similar).

Recent work [12, 14] indicates a trend towards search in the
absence of “intermediary representations” such as MusicXML. For
instance, a deep learning algorithm can accept an audio query and
relate it directly to the appropriate section of a graphics (PDF) file
of the score, without the need for a digital sheet music format. That
said, there are more features one can offer to users with regards
the display, navigation, and manipulation of search results if such
intermediary representations are available. Rather than just being
effective for a discrete song collection such as the Lakeland Hunting
Songs used here, it is envisaged that eventually our work could
be expanded to search for any musical item held within a library
catalogue. The archive-exploration system detailed in this paper
could be a stepping stone towards library users being able to simply
ask a library catalogue for any item within its holdings via a note-
based or audio query.

In this paper, we have outlined the current issues faced by ethno-
musicologists when it comes to cataloguing their collections, as well
as setting out the use cases we hoped our archive-exploration sys-
tem would be able to address for the specific collection of Lakeland
Hunting Songs. We then outlined the design and implementation of
our archive-exploration system before detailing the ways in which
it operates at the current point in time, highlighting positives and
areas in which we aim to be able to improve it in the future. The
archive-exploration system we have created within this project
works well for its intended purpose. It has an 86% success rate for
opening queries and a 90% success rate for chorus queries. Further-
more, results can be obtained quickly (10-20 ms) using the hash
table representation.

In terms of music representations, we discussed how existing sys-
tems such as FolkTuneFinder [28] are robust to rhythmic changes

but not to missing or interpolated notes, so we employed a geomet-
ric hashing approach as the basis for determining matches and as a
potential improvement on existing work. We found this approach
to be advantageous in all but one use case, discussed below.

The archive-exploration system developed in this pilot has brought
several benefits to this project. Primarily, for the ethnomusicologist
and archivist first author, this prototype demonstrates that it is
possible to search musically within a database of tunes, and that
these items can be returned quickly and, to a point, accurately.

An unexpected benefit was in highlighting which tunes were
deemed to be similar in a computational approach, compared with
those that might be grouped together by a human listener. This is
an interesting development which the first author will take forward
into her future work, but this may also be useful in some way
to those working specifically on computational and/or cognitive
approaches to music similarity.

Finally, the search system has brought about greater interest in
the project from external parties (both archivists and folk music
specialists), as there is now a physical interface with which the
ideas in this paper can be demonstrated and explored.

6.1 Limitations and Future Work
The “First of May” triplet query example (see Figure 13) failed to
return this song (Figure 6(A)) in the top ten results, because in terms
of rhythmic spacing, the straight-to-triplet alterations disrupt what
we described as the “musical skeleton” of the tune in Section 3
(p. 3). A solution to this limitation would be to reduce the level
of temporal similarity required for a match. The reduction could
correct this result in future, but this same change would likely lead
to an increase in false-positive results in other scenarios. It is a clear
example of where the pitch-sequential approach of systems such as
[3, 28] is superior to the geometric hashing approach explored here,
because the pitches remain the same but the rhythms are quite
apart. That said, this is the only use case identified in Section 2.1
where geometric hashing fails, and so overall for this application of
music search to an archive-exploration system, we would suggest
geometric hashing is at least equivalent if not superior to the pitch-
sequential approach. Further work and more rigourous evaluation
is required to settle this matter definitively, and probably a hybrid
system that utilises both approaches would be preferable overall.

There were some deficiencies in the note input and subsequent
stave notation rendering that require addressing. First, when a
user causes the number of beats in a bar to be exceeded by the
durations of notes and rests therein, the system ought to break
notes with ties across barlines automatically, but this is not the
case at present. Second, while we developed a syntax to represent
triplets, this assumes that those triplets are all of the same value (e.g.,
three quaver-note triplets) rather than mixed (e.g., one crotchet-
note triplet followed by one quaver-note triplet). Third, the stave
that displays the user’s query assumes a 4-4 time signature and
C-major key signature. Syntactical means of specifying these will
be introduced. Deficiencies in these three stave notation rendering
components will be addressed in future work.

Distinctiveness [6, 9] is a topic that has come up multiple times
in discussion of the above results. We are still investigating cases
of failure for the results given in Table 2, and some may be due to

7

DLfM2021, July 28–30, 2021, Virtual Conference, GA, USA Emmett, Yin, and Collins

an anacrusis bug, but in other cases, not retrieving the intended
song within the top three or ten results comes down to the distinc-
tiveness (or lack thereof) of the query and/or material in each song.
As the first author will go on to explore in future work, there is
much overlap between melodic motifs in these songs, so it is to be
expected that for a given opening query, there might be three or
even ten moments from other songs that match equally well, and so
the target result may be further down the list. A wealth of literature
from music psychology, especially with regards music cognition
memory [e.g., 11, 19], could be brought to bear here, acknowledging
and deciding if/how to model within our future research phenom-
ena such as humans being biased in various ways in terms of music
memory formation (e.g., towards the beginnings of songs or cho-
ruses), whereas a computational search and exploration system
such as that developed here is “more democratic”.

ACKNOWLEDGMENTS
This work was supported by a Jane Moody Scholarship from the
Humanities Research Centre, University of York to the first author.

REFERENCES
[1] Sue Allan. 2017. Folk Song in Cumbria: A Distinctive Regional Repertoire? Ph.D.

Dissertation. Lancaster University, Lancaster, UK.
[2] Andreas Arzt, Sebastian Böck, and Gerhard Widmer. 2012. Fast Identification of

Piece and Score Position via Symbolic Fingerprinting.. In ISMIR. 433–438.
[3] Harold Barlow and Sam Morgenstern. 1948. A dictionary of musical themes.

Crown.
[4] Ron Black and Wendy Fraser. 2013. Hunting Songs Volume Two: Lakeland Songs.

Self-published.
[5] Tom Collins. 2011. Improved methods for pattern discovery in music, with applica-

tions in automated stylistic composition. Ph.D. Dissertation. The Open University.
[6] Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer. 2016. Using

geometric symbolic fingerprinting to discover distinctive patterns in polyphonic
music corpora. In Computational Music Analysis. Springer, 445–474.

[7] Tom Collins and Christian Coulon. 2019. MAIA Util: An NPM Package for
Bridging Web Audio with Music-theoretic Concepts. In Proceedings of the Web
Audio Conference. Trondheim, Norway, 47–52.

[8] Tom Collins, Jeremy Thurlow, Robin Laney, Alistair Willis, and Paul Garthwaite.
2010. A comparative evaluation of algorithms for discovering translational
patterns in baroque keyboard works. In Proceedings of the International Society
for Music Information Retrieval Conference. Utrecht, The Netherlands, 3–8.

[9] Darrell Conklin. 2010. Discovery of distinctive patterns in music. Intelligent Data
Analysis 14, 5 (2010), 547–554.

[10] Darrell Conklin and Ian H Witten. 1995. Multiple viewpoint systems for music
prediction. Journal of New Music Research 24, 1 (1995), 51–73.

[11] Diana Deutsch. 1980. The processing of structured and unstructured tonal
sequences. Perception & psychophysics 28, 5 (1980), 381–389.

[12] Matthias Dorfer, Jan Hajič Jr, Andreas Arzt, Harald Frostel, and Gerhard Widmer.
2018. Learning audio–sheet music correspondences for cross-modal retrieval and
piece identification. Transactions of the International Society for Music Information
Retrieval 1, 1 (2018).

[13] Mary Emmett. 2021. The Hunting Songs and Singing Tradition of the Cumbrian
Lakeland Fell Packs. Ph.D. Dissertation. University of York, York, UK.

[14] Christian Frank. 2020. The Machine Learning Behind Hum to Search. Retrieved
April 11, 2021 from https://ai.googleblog.com/2020/11/the-machine-learning-
behind-hum-to.html

[15] David Garfinkle, Claire Arthur, Peter Schubert, Julie Cumming, and Ichiro Fu-
jinaga. 2017. PatternFinder: Content-Based Music Retrieval with Music21. In
Proceedings of the 4th International Workshop on Digital Libraries for Musicology.
5–8.

[16] Berit Dorle Janssen. 2018. Retained or lost in transmission?: Analyzing and
predicting stability in Dutch folk songs. (2018).

[17] Andreas Kornstädt. 1998. Themefinder: A web-based melodic search tool. Com-
puting in musicology: a directory of research 11 (1998), 231–236.

[18] David Lewin. 1987. Generalized interval systems and transformations. Yale
University Press.

[19] Daniel Müllensiefen and Andrea R Halpern. 2012. The role of features and context
in recognition of novel melodies. Music Perception: An Interdisciplinary Journal
31, 5 (2012), 418–435.

[20] Lyn Murfin. 1990. Popular Leisure in the Lake Counties. Manchester University
Press.

[21] Steve Roud. 2017. Folk song in England. Faber & Faber.
[22] Ian Russell. 2002. The hunt’s up? Rural community, song, and politics. Acta

Ethnographica Hungarica 47, 1-2 (2002), 127–141.
[23] Ian Russell. 2003. The singer’s the thing: The individual and group identity in a

Pennine singing tradition. Folk Music Journal (2003), 266–281.
[24] Charles Villiers Stanford (Ed.). 1906. The National Song Book: A Complete Col-

lection of the Folk-songs, Carols, and Rounds suggested by the Board of Education
(1905). Boosey & Co., London, UK.

[25] Rainer Typke. 2007. Music retrieval based on melodic similarity. Ph.D. Dissertation.
Utrecht University.

[26] Esko Ukkonen, Kjell Lemström, and Veli Mäkinen. 2003. Geometric algorithms
for transposition invariant content-based music retrieval. In Proceedings of the
International Society for Music Information Retrieval Conference. 193–199.

[27] Avery Li-Chun Wang and Julius O. Smith III. 2012. System and methods for
recognizing sound and music signals in high noise and distortion. Patent US
8,190,435 B2. Continuation of provisional application from 2000.

[28] Joe Wass. 2008. FolkTuneFinder. Retrieved April 11, 2021 from https://www.
folktunefinder.com/

[29] Mark Allen Weiss. 2010. Data structures and problem solving using Java (4 ed.).
Pearson Education, Inc.

[30] Zongyu Yin, Federico Reuben, Susan Stepney, and Tom Collins. 2021. “A Good
Algorithm Does Not Steal–It Imitates”: The Originality Report as a Means of
Measuring When a Music Generation Algorithm Copies Too Much. In Artificial
Intelligence in Music, Sound, Art and Design: EvoMUSART. Springer International
Publishing, 360–375.

8

https://ai.googleblog.com/2020/11/the-machine-learning-behind-hum-to.html
https://ai.googleblog.com/2020/11/the-machine-learning-behind-hum-to.html
https://www.folktunefinder.com/
https://www.folktunefinder.com/

	Abstract
	1 Introduction
	2 Lakeland Hunting Songs
	2.1 Music Examples

	3 Music Search
	4 Design and Implementation of Our Archive-Exploration System
	4.1 Hash Construction
	4.2 Storage and Retrieval

	5 Evaluation
	6 Discussion
	6.1 Limitations and Future Work

	Acknowledgments
	References

