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Abstract. Representing musical notes as points in pitch-time space
causes repeated motives and themes to appear as translationally related
patterns that often correspond to maximal translatable patterns (MTPs)
[1]. However, an MTP is also often the union of a salient pattern with
one or two temporally isolated notes. This has been called the problem of
isolated membership [2]. Examining the MTPs in musical works suggests
that salient patterns may correspond more often to the intersections of
MTPs than to the MTPs themselves. This paper makes a theoretical
contribution, by exploring properties of patterns that are maximal with
respect to their translational equivalence classes (MTEC). We prove that
a pattern is MTEC if and only if it can be expressed as the intersection
of MTPs. We also prove a relationship between MTECs and so-called
conjugate patterns.

Keywords: Pattern Discovery, Motivic Analysis, Repetition in Music,
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1 Introduction

In this paper, we address an aspect of the problem of computing a structural
description of a passage of music when given a multi-dimensional point-set rep-
resentation of the passage as input (as used, for example, in [1–11]). We are
particularly concerned with computing structural descriptions that identify all
(and only) the occurrences of perceptually salient or analytically interesting pat-
terns that are stated more than once, possibly at different transpositions. Such
patterns typically correspond to motives, themes, and sections.

We assume throughout this paper that each note in the passage to be analysed
is represented as a two-dimensional point in pitch-time space (see Figs. 1 and 2
for examples). However, the results presented here actually apply to point sets
of any finite dimension, and for any domain where it is useful to represent data
as multi-dimensional point sets.

When a pattern is repeated, it is commonly transposed modally by a certain
number of scale steps, rather than chromatically by a certain number of semi-
tones. We therefore generally assume in this paper that, if the input passage



is tonal, then the pitch of each note is represented by an integer indicating its
morphetic or “diatonic” pitch [1, 8], which corresponds to the note’s position on
the staff, in contrast to its chromatic pitch, which is usually represented by its
MIDI note number. Given a MIDI file of a passage of tonal music as input, the
morphetic pitches of the notes in the passage can typically be computed with a
high degree of accuracy using a pitch-spelling algorithm such as PS13s1 [8, 10].
Using morphetic instead of chromatic pitch allows for many types of modal trans-
position to be found using fast, robust, exact-matching algorithms, rather than
slower, less precise, approximate-matching algorithms (see [1, pp. 329–330]).

Meredith et al. [1] propose that perceptually salient and/or analytically in-
teresting repeated patterns in music often correspond to what they call maximal
translatable patterns (or MTPs, see Sect. 2). Given a point-set representation
of a passage of music in pitch-time space, as described above, the MTP for a
particular vector is the set of points (i.e., notes) that can be translated by that
vector to give other points in the point-set representation (see Fig. 2 for some
examples). It can be shown that the sum of the cardinalities of all the transpo-
sitionally distinct MTPs for non-zero vectors for a dataset containing n points
is less than or equal to n(n − 1)/2, implying that the number of such MTPs is
substantially less than the 2n distinct subsets of D. Thus, if the set of percep-
tually salient repeated patterns in a musical passage is generally a subset of the
MTPs for a passage, then the space of candidate patterns to be searched by an
algorithm aiming to find only the interesting patterns can be greatly reduced.
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Fig. 1. MTPs from works in the first book of J.S. Bach’s Das Wohltemperierte Clavier
that exhibit the problem of isolated membership. (A) Prelude in C major (BWV 846);
(B) Fugue in C sharp major (BWV 848); (C) Fugue in C major (BWV 846); (D) Fugue
in C minor (BWV 847).



Meredith et al. [1] also propose that those patterns that are perceived as
most salient generally tend to be compact, in the sense that their bounding boxes
do not usually contain many non-pattern points. This hypothesis was recently
confirmed experimentally by Collins et al. [5]. However, Collins et al. [2] observe
that it is not uncommon for an MTP to be the union of a salient, compact
pattern with a small number of temporally isolated notes that prevent the MTP
as a whole from corresponding to a perceptually salient musical pattern. Collins
et al. [2] call this the problem of isolated membership. Fig. 1 shows some examples
of MTPs in works from the first book of Johann Sebastian Bach’s (1685-1750)
Das Wohltemperierte Clavier that suffer from this problem.

One way of solving this problem would be to filter out the less compact
patterns in the output of an algorithm such as SIATEC that finds MTPs, as
described in [9]. An alternative strategy, implemented in Collins et al.’s SIACT
algorithm [2], is to “trawl” each MTP and return subsets of lexicographically
consecutive pattern points (assuming the time dimension is given priority) that
have compactness and cardinality greater than specifiable thresholds.

Another way of removing isolated points from an MTP is to calculate its
intersection with a second MTP that contains fewer or different isolated points.
Here, we explore properties of the class of patterns that are intersections of
MTPs, showing that this is also the class of patterns that are maximal with
respect to their translational equivalence classes, or MTEC. A relationship is also
proved between MTEC patterns and another interesting class of patterns called
conjugate patterns [4]. We do not demonstrate definitively that MTECs solve
the problem of isolated membership, but focus instead on developing some new
theory. To begin, we review some definitions and lemmas relating to maximal
translatable patterns.

2 A Review of Maximal Translatable Patterns

The material in this section consists mainly of rearrangements of definitions and
lemmas from [1], with new examples. They are necessary for building new theory
in later sections.

Definition 1. A point set D is a non-empty, finite subset of Rk. A pattern P
is a subset of D, and, unless stated otherwise, non-empty and not equal to D.

Definition 2. The difference set for a point set D, written ∆(D), is defined by

∆(D) = {e− d | d, e ∈ D}. (1)

Working with ∆(D) is somewhat inefficient, since u ∈ ∆(D) implies −u ∈
∆(D). For d = (d1, d2, . . . , dk), e = (e1, e2, . . . , ek) ∈ D, we say that d is less
than e, denoted by d < e, if and only if there exists an integer 1 ≤ j ≤ k such
that dj < ej, and di = ei for 1 ≤ i < j. Then the reduced difference set for a
point set D, written ∆∗(D), is defined by

∆∗(D) = {e− d | d, e ∈ D, and d < e}. (2)



Definition 3. For an arbitrary vector v ∈ Rk and an arbitrary point set D ⊂
Rk, the maximal translatable pattern (MTP) of the vector v in the point set D
is

MTP(v, D) = {d ∈ D | d+ v ∈ D}. (3)

Example 1. An excerpt of a piece by Anton Bruckner (1824-1896) is shown in
Fig. 2A, with the line bounding a pattern that contains 9 notes. Switching to the
point-set representation D, shown in Fig. 2B, the MTP of the vector v = (4,−2)
in D is shown as black dots. Two solid arrows indicate the vector v, and that
members of MTP(v, D) are translatable in D by v.

Does P = MTP(v, D) correspond to the pattern of interest from Fig. 2A? Not
exactly: there is an extra, temporally isolated point with coordinates (3.5, 62),
which also happens to be translatable in D by v = (4,−2). This is an example of
the problem of isolated membership [2]. An algorithm that returns all MTPs in
a point set D has been defined [1], but MTPs are affected by isolated member-
ship. Addressing this problem would make the algorithmic discovery of repeated
patterns more effective, removing the need to check output MTPs for isolated
members. A second MTP, for the vector u = (2,−1), is shown as empty circles.
We return to it in Ex. 5, but again it contains extra points.
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Fig. 2. (A) Bars 18-21 (with upbeat) of the Rondo in C minor for String Quartet (WAB
111) by Anton Bruckner. A nine-note pattern, repeated twice at lower pitch heights,
is bounded by the line; (B) Point-set representation for the excerpt from Fig. 2A. Two
MTPs are shown as empty circles and black dots respectively.



Lemma 1. Let v ∈ Rk be an arbitrary vector, and D ⊂ Rk an arbitrary point
set. The maximal translatable pattern of v in D, denoted MTP(v, D), is non-
empty if and only if v ∈ ∆(D), where ∆(D) is the difference set for D.

Proof. See [1].

Definition 4. For an arbitrary vector v ∈ Rk and an arbitrary pattern P , the
translation of the pattern P by the vector v is defined by

τ(P,v) = {p+ v | p ∈ P}. (4)

Let P,Q be arbitrary patterns. We say that P is translationally equivalent to
Q, written P ≡τ Q, if and only if there exists some vector v ∈ Rk such that
Q = τ(P,v). It can be shown that ≡τ is an equivalence relation in the proper
mathematical sense (reflexivity, symmetry, and transitivity).

For an arbitrary point set D ⊂ Rk and an arbitrary, non-empty pattern
P ⊆ D, the translational equivalence class of P in D is defined by

TEC(P,D) = {Q ⊆ D | Q ≡τ P}. (5)

Example 2. Letting P be the set of nine points in Fig. 2B that are black dots
surrounded by circles, the translational equivalence class of P in D consists of
three sets in total. This is perhaps easiest to see by focusing on the part of P
in Fig. 2B that forms a diagonal line. There is P itself, a second occurrence
appearing as empty circles to the right, and a third occurrence appearing as
crosses further to the right.

Definition 5. Working with TEC(P,D) is somewhat inefficient, since if |P | = l
and |TEC(P,D)| = m, then lm vectors need to be stored in memory. For a point
set D ⊂ Rk and a pattern P ⊆ D, the translators of P in D are given by

T (P,D) = {v ∈ Rk | τ(P,v) ⊆ D}. (6)

Now only l+m vectors need be stored in memory to represent the same informa-
tion, or only l +m− 1 if we remove the ever-present zero vector from T (P,D).

Example 3. With P and D defined as in Example 2, the translators of P in D
are 0 = (0, 0),u = (2,−1), and v = (4,−2).

3 Maximal Translational Equivalence Classes

Material in this and subsequent sections is novel. The purpose of this section
is to introduce another type of maximal repeating pattern, and to show how it
relates to maximal translatable patterns.

Definition 6. Let P be a non-empty pattern in a point set D, and let the trans-
lational equivalence class of P in D, denoted TEC(P,D), have m elements. We



say that P is maximal with respect to its translational equivalence class (or
MTEC for short) if for each non-empty subset S of D\P ,

|TEC(P ∪ S,D)| < m. (7)

That is, however the pattern P is extended to include arbitrary new elements
from the point set D, the resulting translational equivalence class has fewer mem-
bers than TEC(P,D).

Remark 1. The proofs below assume that S contains one arbitrary element, usu-
ally denoted by e. This is a valid assumption to make, for if it is possible to
extend the pattern P by two, three, etc. elements in a way that does not reduce
the cardinality of the resulting translational equivalence class, then there exist
extensions consisting of one element.

Example 4. Fig. 3A contains a point set D = {a, b, c,d, e,f , g}. The pattern
P = {a, b}, which is shown as empty circles and occurs 4 times, is MTEC.
We can verify P is MTEC by extending it, and observing that the number of
occurrences for each extension P ′ is less than 4 (see first two columns of Table 1).
In Fig. 2B, the pattern consisting of dots surrounded by circles is also MTEC,
but this would take much longer to verify, suggesting that we need to gain a
better understanding of how to discover MTEC patterns.
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Fig. 3. (A) An example of a pattern P = {a, b} that is MTEC, but is not an MTP;
(B) An example of conjugate patterns. Pattern P1, containing 3 points, is indicated by
the dashed bounding line. Its conjugate pattern Q1, containing 2 points, is indicated
by the solid bounding lines.

Lemma 2. Let P be a non-empty pattern in a point set D, with TEC(P,D)
having m elements. If P is maximal with respect to TEC(P,D) (i.e., P is MTEC)
then for an arbitrary member Q ∈ TEC(P,D) such that Q (= P , Q is also
maximal with respect to TEC(P,D) (i.e., Q is also MTEC).



Table 1. Column 1 shows extensions of pattern P = {a, b} from Fig. 3A, and column
2 shows m = |TEC(P ′, D)|, the number of occurrences of P ′ in D. Columns 3 and 4
show the maximal translatable pattern in D for each non-zero translator v of P .

P ′ m v MTP(v, D)

{a, b, c} 3 (1, 0) {a, b, c, e}
{a, b,d} 2 (1, 1) {a, b,d, e}
{a, b, e} 3 (2, 1) {a, b, c}
{a, b,f} 1

{a, b, g} 1

Proof. Suppose otherwise, that there exists e ∈ D\Q such that

|TEC(Q ∪ {e}, D)| ≥ m, (8)

and try to derive a contradiction. We know Q = τ(P,v) for some vector v. So

e ∈ D\Q ⇒ e ∈ D\τ(P,v) (9)

⇒ e /∈ τ(P,v) (10)

⇒ e /∈ {p+ v | p ∈ P} (11)

⇒ e− v /∈ P. (12)

Let d = e− v. There are two cases: either d ∈ D; or d /∈ D.

– If d ∈ D, then TEC(Q∪ {e}, D) and TEC(P ∪ {d}, D) are different ways of
writing the same set. As d ∈ D\P , we can exploit the maximality of P with
respect to TEC(P,D), giving

|TEC(Q ∪ {e}, D)| = |TEC(P ∪ {d}, D)| < m. (13)

This is a contradiction to (8).
– If d /∈ D, then

P ∪ {d} /∈ TEC(Q ∪ {e}, D), as P ∪ {d} is not a subset of D. (14)

So TEC(Q ∪ {e}, D) has lost one member compared with TEC(P,D). But
has it gained any members?

A ∈ TEC(Q ∪ {e}, D) ⇒ A = τ(Q ∪ {e},x) for some vector x (15)

= {q + x | q ∈ Q} ∪ {e+ x}
⇒ A\{e+ x} = τ(Q,x) (16)

⇒ A\{e+ x} ∈ TEC(Q,D) (17)

⇒ A\{e+ x} ∈ TEC(P,D). (18)



This shows the answer is ‘no’, that for each A ∈ TEC(Q ∪ {e}, D), there is
(at least) one member A\{e + x} ∈ TEC(P,D). So TEC(Q ∪ {e}, D) has
not gained any members compared with TEC(P,D).
Taken together with (14), this implies |TEC(Q∪ {e}, D)| < m, a contradic-
tion to (8).

In both cases a contradiction to the opening supposition has been derived.
We conclude that if P is maximal with respect to TEC(P,D) then for an arbi-
trary member Q ∈ TEC(P,D) such that Q (= P , Q is maximal with respect to
TEC(P,D). +,

Remark 2. The argument in lines (15)-(17) will be needed again, so we call
it the no-gains argument. Lemma 2 says that if P ∈ TEC(P,D) is maximal
with respect to its translational equivalence class, then so is each member of
TEC(P,D). This means that the concept of a maximal translational equivalence
class (or “MTEC” used as a noun rather than an adjective) is well defined.

Lemma 3. Let D be a point set with difference set ∆(D), and P = MTP(u, D)
for some u ∈ ∆(D). (By Lemma 1, P is non-empty.) Then P is maximal with
respect to its translational equivalence class (MTEC).

Proof. Let 1 < |TEC(P,D)| = m < |D|, and let

TEC(P,D) = {P0, P1, . . . , Pm−1},
P0 = P,

Pi = τ(P,xi), i = 0, 1, . . . ,m− 1.

Note x0 = 0. Now P = {d ∈ D | d + u ∈ D}, so without loss of generality,
assume x1 = u. Letting e ∈ D\P ,

P ∪ {e} = {d ∈ D | d+ u ∈ D} ∪ {e}.

We know e+ u /∈ D, otherwise P would not be a maximal translatable pattern.
Therefore P1 ∪ {e+ u} /∈ TEC(P ∪ {e}, D).

So TEC(P ∪{e}, D) has lost at least one member compared with TEC(P,D).
But has it gained any members? The answer is ‘not compared with TEC(P,D)’,
by the no-gains argument (15)-(17) (with each occurrence of Q replaced by P ).

Therefore, |TEC(P ∪ {e}, D)| < m, and by definition, P is MTEC. +,

Remark 3. The converse does not hold in general. That is, P can be maximal
with respect to its translational equivalence class TEC(P,D), but none of the
members satisfy Q = MTP(v, D), where Q ∈ TEC(P,D) and v ∈ ∆(D) are
arbitrary. An example of such a pattern P = {a, b} was shown in Fig. 3A. We
demonstrated in Example 4 that P is MTEC. Columns 3 and 4 of Table 1 show
the maximal translatable pattern inD for each non-zero translator of P = {a, b}.
None are equal to P , so P is not an MTP.



Theorem 1. A non-empty pattern is maximal with respect to its translational
equivalence class if and only if that pattern is equal to the intersection taken over
the maximal translatable patterns of its translators. In symbols,

P ⊆ D is MTEC ⇐⇒ P =
⋂

v∈T (P,D)

MTP(v, D), (19)

where T (P,D) is the set of translators of P in D.

Proof. ‘⇒’ First we suppose that P ⊆ D is non-empty and MTEC. Let
T (P,D) = {v1,v2, . . . ,vm} and

S =
m⋂

i=1

MTP(vi, D). (20)

P is translatable by each of the vectors v1,v2, . . . ,vm, so it belongs to each of
MTP (v1, D),MTP (v2, D), . . . ,MTP (vm, D), and hence belongs to their inter-
section also. Therefore it is a subset of S. If it is a proper subset of S (i.e., not
equal to S), then there exists e ∈ S\P such that TEC(P ∪ {e}, D) has as many
elements as TEC(P,D), which is a contradiction to P being MTEC. It follows
that S = P , which is what we wanted to show.

‘⇐’ Now we suppose that P ⊆ D is non-empty and expressible as the
intersection taken over the maximal translatable patterns of its translators

P =
m⋂

i=1

MTP(vi, D), (21)

where T (P,D) = {v1,v2, . . . ,vm}.
We wish to show that P is MTEC, so let e ∈ D\P be arbitrary, and try to

derive
|TEC(P ∪ {e}, D)| < |TEC(P,D)| = m. (22)

For at least one j ∈ {1, 2, . . . ,m}, e /∈ MTP(vj , D). Otherwise e ∈ P , implying
e /∈ D\P , which is a contradiction. So without loss of generality, assume e /∈
MTP(v1, D). We know e + v1 /∈ D, otherwise e ∈ MTP(v1, D). Therefore
τ(P ∪ {e},v1) /∈ TEC(P ∪ {e}, D).

So TEC(P ∪{e}, D) has lost at least one member compared with TEC(P,D).
But has it gained any members? The answer is ‘not compared with TEC(P,D)’,
by the no-gains argument (15)-(17) (with each occurrence of Q replaced by P ).
This shows that P is MTEC. +,

Example 5. Two MTPs are shown in Fig. 2B: the MTP of u = (2,−1) as empty
circles and the MTP of v = (4,−2) as dots. From Theorem 1, we know that
the intersection of these MTPs, which consists of the dots surrounded by circles,
is MTEC. This intersection also corresponds exactly to the pattern of interest
from Fig. 2A. So for this excerpt at least, computing an MTEC pattern solves
the problem of isolated membership.



4 Conjugate Patterns and Their Relation to MTECs

Suppose there are m translationally equivalent occurrences in some point set of a
pattern P whose size is l. This section shows that there must be another pattern
Q consisting of m points that has at least l occurrences in the same point set.

Definition 7. Let P be a pattern in a point set D, with translational equivalence
class TEC(P,D) = {P1, P2, . . . , Pm}. For an occurrence Pi ∈ TEC(P,D), let
Pi = {pi,1,pi,2, . . . ,pi,l}. The conjugacy array JP,D for the pattern P in the
point set D is defined by

JP,D =





p1,1 p1,2 · · · p1,l

p2,1 p2,2 · · · p2,l

...
...

. . .
...

pm,1 pm,2 · · · pm,l




. (23)

Each row of JP,D constitutes an element of TEC(P,D), but what about the
columns of JP,D? Letting Q = {p1,1,p2,1, . . . ,pm,1} be the set of points from the
first column, each column of JP,D constitutes an element of TEC(Q,D). It is
said that P and Q are conjugate patterns, and that TEC(P,D) and TEC(Q,D)
are conjugate TECs.

Example 6. Letting P be the dots surrounded by circles in Fig. 2B, two members
Q2 andQ6 of the conjugate TEC are indicated by dashed lines. Another example:
with P1 as shown in Fig. 3B, a member Q1 of the conjugate TEC is indicated
by solid bounding lines.

Remark 4. It should be noted that: (1) there might be more than l occurrences
of Q in D; (2) if P ⊆ D is a maximal translatable pattern, it does not follow
that the conjugate pattern Q or one of its translations are maximal translatable
patterns. Examples of both of these statements are shown in Fig. 3B. (1) If we
let D be the set of all points in Fig. 3B, and P1 be as shown, then the conjugacy
array of P1 contains two rows and three columns, and the pattern Q1 is defined
by the first column, contains two points and has at least three occurrences. We
see from the unfilled dots in Fig. 3B that Q1 has four occurrences. (2) Now let
D be the set of crosses only in Fig. 3B, so that P1 is a maximal translatable
pattern. The points in the bottom-right corner of Fig. 3B, however, prevent Q1

or one of its translations being maximal translatable patterns.

Theorem 2. Let the pattern P have m occurrences in the point set D, contain
l points, and be maximal with respect to its translational equivalence class. Then
there exists a conjugate pattern Q that has l occurrences in D, contains m points,
and is maximal with respect to its translational equivalence class.

Proof. Let JP,D denote the conjugacy array for the pattern P in the point set
D, and let Q = {p1,1,p2,1, . . . ,pm,1}, as in Definition 7.



We suppose that Q is not maximal with respect to its translational equivalence
class (MTEC) and try to derive a contradiction. If Q is not MTEC, then by
definition there exists e1 ∈ D\Q such that Q∪ {e1} has as many occurrences in
D as Q. We can show occurrences of Q ∪ {e1} as columns in the array

J ′
P,D =





p1,1 p1,2 · · · p1,l

p2,1 p2,2 · · · p2,l

...
...

. . .
...

pm,1 pm,2 · · · pm,l

e1 e2 · · · el





. (24)

But now E = {e1, e2, . . . , el} is an extra occurrence of P = {p1,1,p1,2, . . . ,p1,l},
and so P has m + 1 occurrences in D. This is a contradiction to P having m
occurrences in D, from which it follows that Q must be MTEC.

By a similar argument (constructing a new column instead of a new row), it
follows that Q has exactly l occurrences. +,

Remark 5. Theorem 2 establishes an important relationship between MTECs
and conjugate patterns, showing that the conjugate patterns of MTEC patterns
are themselves MTEC.

5 Summary and Possible Directions for Future Work

Over the past decade or so, there has been a growing interest in using point sets
to represent music, especially in computational musicology and music informa-
tion retrieval. One of the advantages of this approach is that it is well-suited to
representing “unvoiced” polyphonic music (e.g., keyboard music). Another ben-
efit is that it allows for the efficient, automatic discovery of maximal translatable
patterns (MTPs) that often correspond closely to perceptually salient repeated
musical patterns, such as motives, themes and sections. However, MTPs also
quite commonly suffer from the problem of isolated membership.

The contribution of this paper is theoretical primarily, providing a deeper
understanding of the mathematical properties of MTPs and a new class of pat-
terns that are maximal with respect to their translational equivalence classes
(MTEC). We have shown that a pattern is MTEC if and only if it is the inter-
section of the MTPs of its translators (Theorem 1). We have also shown that
MTEC patterns have MTEC conjugates (Theorem 2).

At present it is unclear whether the calculation of MTECs represents a viable
alternative solution to the problem of isolated membership. While the example
in Fig. 2 is encouraging, generating all the MTEC patterns for even a modestly-
sized piece of music would be impractical, since the number of MTEC patterns
is O(2k) where k is the number of MTPs, and even a piece of around 500 notes
may well have tens of thousands of MTPs. Designing a practical algorithm for
generating only the perceptually salient MTEC patterns is therefore an interest-
ing problem for future research. Once such an algorithm has been developed, it



will be possible to explore more rigorously whether perceptually salient musical
patterns correspond more closely to MTEC patterns or MTPs.
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