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ABSTRACT
Algorithms for the discovery of musical repetition have been developed in audio and symbolic domains more
or less independently for over a decade. In this paper we combine algorithms for multiple F0 estimation,
beat tracking, quantisation, and pattern discovery, so that for the first time, the note content of motifs,
themes, and repeated sections can be discovered directly from polyphonic music audio. Testing on dead-
pan and expressive piano renditions of pieces, we compared pattern discovery performance against runs on
symbolic representations of the same pieces. Comparing deadpan audio with deadpan-symbolic representa-
tions, establishment precision and recall fell by ∼ 25%, and by ∼ 50% when comparing expressive audio with
deadpan-symbolic representations. The music data and evaluation results establish a benchmark for future
work that attempts to bridge the audio-symbolic gap.

1. INTRODUCTION
Traditionally in music information retrieval, structural

analysis of audio has focused on segmentation—the con-
struction and labelling of a set of non-overlapping time
windows covering the duration of a song or piece [1].
Often segmentation involves calculating and summaris-
ing self-similarity matrices [2, 3]. Taking the excerpt by
Wolfgang Amadeus Mozart (1756-1791) in Fig. 1A as an
example, the single, linear segmentations in Figs. 1B–D
are all plausible solutions. They capture aspects of the
piece’s structure, but no one segmentation covers all of
the following:

• The motif P1, bounded by a solid black line in
Fig. 1A, occurs transposed as P2, and was originally
annotated by Schoenberg [4];

• R1, also bounded by a solid black line, occurs a sec-
ond time as R2, and is another of Schoenberg’s [4]
annotations;

• The theme, according to Barlow and Morgenstern
[5], appears bounded by a dashed line and is la-
belled Q1. It reappears in the left hand in bars 18–22
(not shown);

• Bars 1–12 end with a repeat mark (see the arrow
in Fig. 1A) and so form a repeated section. This is
indicated by the dotted line and the labels S1 (first
time) and S2 (second time).

Advancing beyond single linear segmentation, a recent
paper [6] on the structural analysis of audio used scape
plots [7] to show multiple segmentations and their rela-
tions simultaneously. Segments appeared nested within a
large triangle that represented the entire song/piece. Still
it was not possible to see/hear the note content of these
segments, however. The current paper aims to take one
step further, beyond rectangular [1] or nested [6] seg-
ments, by enabling the structural analysis of audio to take
place at an unprecedented level of detail and meaning;
that of note content.

The use of an automated transcription system will be
key to realising such an aim. Transcription is a ‘tech-
nique, learned by every music student, of taking aural
dictation, in which it is necessary to listen accurately, to
construe analytically, and to notate’ [8]. The develop-
ment of automated transcription systems involves sev-
eral challenging problems, including the estimation of
multiple fundamental frequencies (multiple F0 estima-
tion) [9, 10, 11, 12] and the quantisation of musical time
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Fig. 1: (A) Bars 1–12 of the second movement from Piano Sonata no.4 in E[ major K282 by Mozart, annotated with
repeated patterns; (B-D) Three plausible, linear segmentations of the excerpt from Fig. 1A. Numbers below the staff
in Fig. 1A and below the segmentation in Fig. 1D indicate crotchet beats, from zero for bar 1 beat 1; (E) Transcription
of Friedrich Gulda’s performance of bars 1–5, and an annotation T1,T2 of a pattern discovered by SIARCT-CFP.
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[13, 14, 15]. Research has tended to emphasise the for-
mer problem over the latter, with frame-based evaluation
methods overlooking the quantisation problem entirely
[10]. In this paper, algorithms for multiple F0 estimation
and quantisation are integrated and evaluated as one, for
the first time to our knowledge. Then, using an existing,
symbolic method [16] for discovering motifs, themes,
and repeated sections such as in Fig. 1A, we evaluate
the extent to which meaningful repeated patterns can be
identified in the transcriptions of both deadpan and ex-
pressive performances.

As most songs and pieces of music are not readily avail-
able in machine-readable symbolic formats, being able
to broaden the scope of pattern discovery algorithms to
handle audio input would constitute a significant step for-
ward. With this aim in mind, the paper is arranged as
follows: after a review outlining existing work in pat-
tern discovery, we go on in Sec. 3 to describe our com-
bination of multiple F0 estimation, beat-tracking, quan-
tisation, and pattern discovery algorithms (please see the
flow chart in Fig. 2). An evaluation of the system is
reported in Sec. 4 for pieces from the Johannes Kepler
University Patterns Development Database (JKUPDD);
a purpose-built collection for the development and test-
ing of pattern discovery algorithms [17]. The final sec-
tion discusses the evaluation results and the prospects for
applying our system to yet more complex audio signals.

2. REVIEW OF EXISTING WORK
This review focuses on symbolic pattern discovery, but

we begin by acknowledging some existing methods for
audio structural segmentation that utilise a transcription
front-end [18, 19, 20]. As with the systems mentioned
above [1, 2, 3], we find the presumed existence of some
optimal, linear segmentation to be oversimple and prob-
lematic; there are three plausible segmentations of the
excerpt from Mozart’s K282 (Fig. 1A-D), and this exam-
ple reflects the often-hierarchical nature of musical repe-
tition.

It is helpful to delineate three classes of music represen-
tation to which we refer throughout the paper:

1. Deadpan symbolic (representation derived from the
musical score, with metronomically exact timing);

2. Deadpan audio (audio files synthesised from
deadpan-symbolic representations);

3. Performed audio (acoustic recordings of expressive
human performances).

Music audio

(deadpan/performed)

3.1 Multi F0 estimat-
ion neural network

(Onset, MIDI

note)-pairs

3.3 Quantisation and pitch spelling

(Ontime, MPN)-pairs;

point-set representation

SIAR

Compactness trawler

Categorisation

Fingerprinting

Point sets corresponding to

motifs, themes, & repeated sections

4. Evaluation
framework

Precision & recall:

P
est

, R
est
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occ

, R
occ

3.4 Pattern discovery

Deadpan

symbolic

SIARCT-CFP

3.2 Beat-tracking
hidden Markov model

Onsets of

main beats

Transcription

Fig. 2: Flow chart depicting the combination of multi-
ple F0 estimation, beat-tracking, quantisation, and pat-
tern discovery algorithms. Input formats are indicated
by dashed boxes, algorithms by solid boxes, and inter-
mediary or output formats without boxes.

Not surprisingly, the majority of work on pattern discov-
ery at the note level makes use of deadpan-symbolic rep-
resentations [21, 16]. A piece is represented as a point
set D, consisting of (ontime, MIDI note)-pairs, say. Two
subsets A,B ⊂ D that obey a translational relationship
B = A + c might correspond to two occurrences of some
motif, theme, or repeated section [21, 16]. Algorithms
that operate on point sets like D, returning sets (or pat-
terns) such as A, are called geometric pattern discovery
algorithms. They are the main method for discovering
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repetition in unvoiced polyphonic music.

If one were to run a geometric pattern discovery algo-
rithm on a symbolic representation containing expressive
timing (e.g., a recording of a performer playing a MIDI
instrument), this would cause problems because the ex-
actness of the translations (such as B = A + c) would be
lost. While allowing for inexactness at this early pro-
cessing stage is conceivable (e.g., the distance between
each point a + c and the corresponding b is always less
than ε), it will be costly in terms of runtime and output
size. As such, below we will quantise an incoming set
of event times, in order to enable the application of an
existing geometric pattern discovery algorithm.

An evaluation framework for pattern discovery algo-
rithms exists, based on robust metrics called establish-
ment precision and establishment recall, and occurrence
precision and occurrence recall [17]. The establishment
metrics measure the extent to which an algorithm can
discover at least one occurrence of each ground truth
repeated pattern (the algorithm may miss several or all
other occurrences and still score highly). For instance,
an algorithm that returns P1 from Fig. 1A but misses sub-
sequent occurrences P2, P3, and P4 will still be rewarded.
The occurrence metrics, on the other hand, assess the ex-
tent to which an algorithm finds all occurrences of each
ground truth pattern, given that it has discovered one oc-
currence. For instance, an algorithm that returns all oc-
currences Pi, Q j, and Rk from Fig. 1A but misses S1 and
S2 entirely will still be rewarded.

3. TRANSCRIPTION & DISCOVERY SYSTEM
A flow chart for our transcription and pattern discov-

ery system is shown in Fig. 2. Previous to this pa-
per, discovery of musical structure at the note level re-
lied on a deadpan-symbolic representation, indicated in
Fig. 2 by the dashed, grey box. By the end of this sec-
tion, we will have described how pattern discovery at the
note level can be achieved using audio as input (dead-
pan or performed). Parameter choices for the various
components—multiple F0 estimation [9], beat-tracking
[13], quantisation, and pattern discovery [16]—have for
the most part been established in previous work, and so
will not be discussed in minute detail here.

We begin with an example of the transcription system
in action, given in Fig. 1E. Multiple F0 and onset esti-
mation give the data plotted as grey squares (through-
out the term onset is used to mean the time in seconds
in R at which an audio event such as a performed note

is estimated to begin). The beat-tracking algorithm pro-
vides estimates of the times in the audio at which the
main beats (or onbeats) occur, indicated in Fig. 1E by
the vertical dashed lines. The interval between two on-
beats is further subdivided by a fixed set of irreducible
fractions, giving time estimates for certain offbeats, in-
dicated by the vertical dotted lines. Now we have a bi-
jection between (1) a set of on- and offbeat times and
(2) symbolic ontimes (the term ontime is used to mean
the time in Q measured in crotchet beats at which a note
begins, according to a deadpan-symbolic representation
of the piece). Quantisation—the process of attributing
ontimes (and thence bar, beat, and sub-beat numbers) to
a set of onsets detected in an audio file or some other
continuous-time representation [14]—can now occur by
moving an estimated (onset, MIDI note)-pair to the clos-
est on- or offbeat time, and then using the bijection to
derive its ontime. For instance, please see the arrow and
filled black circles in Fig. 1E: those black circles also
containing a white dot correspond to true positives. To
make it easy to refer back to the terms onset, onbeat,
offbeat, and ontime, working definitions are provided in
Table 1.

3.1. Multiple F0 Estimation
As shown in the flow chart in Fig. 2, we use a system
to convert audio signals into a piano-roll-like represen-
tation [9], e.g., (onset, MIDI note)-pairs (please see the
grey squares in Fig. 1E). The system uses a neural net-
work consisting of three bidirectional hidden layers with
88 long short-term memory units (LSTM) each [22], to
simultaneously detect the onsets and the MIDI numbers
of played notes. Bidirectionality and LSTM are intended
to increase the network’s ability to model the temporal
context surrounding a given input value. This is particu-
larly important for note detection, to capture characteris-
tic envelopes accompanying not only the attack phase but
also sustain, decay, and release phases of played notes.

The network operates on an input vector of 366 elements,
consisting of the logarithmic magnitudes of semitone-
filtered spectrograms and their first-order time deriva-
tives, sampled from the 44.1 kHz audio signal at a con-
stant frame rate of 100 fps. The spectrograms are ob-
tained by two parallel short-time Fourier transforms
(STFT) with window lengths of 46 and 186 ms, afford-
ing both a good temporal and frequency resolution. This
enables the system to report even the lowest played notes
with a high temporal precision. The network has a re-
gression output layer consisting of 88 units, one for each
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Term Definition
Onset Estimated time (s) in R at which an audio event begins.
Onbeat Time (s) in R at which a main beat occurs, estimated by beat tracking.
Offbeat Time (s) in R at which a simple subdivision of the main beat occurs, estimated by

interpolation of beat-tracker output.
Ontime Time in Q measured in crotchet beats at which a note begins, according to a deadpan-

symbolic representation.

Table 1: Working definitions of onset, onbeat, offbeat, and ontime.

MIDI number. Compared to other state-of-the-art sys-
tems using one-versus-all classification [12], the regres-
sion output layer has been shown to be superior at dis-
tinguishing between fundamental and partial frequency
content [9]. The activation function for each note is the
output of each of these units, representing the probability
that a MIDI note number is sounding at a certain time.

Note onsets and MIDI numbers are determined from the
activation functions by smoothing and thresholding on
a per-note basis, using a training set consisting of real
recordings and synthesised versions of piano music from
a range of sources [9, 11, 12], comprising a total of
∼1.5 M notes. In the current paper a higher threshold
than in the original implementation was chosen, with a
value of .45 providing a compromise between false posi-
tives and false negatives. The reduction of false positives
was of primary concern here, to minimise the size of the
input to the pattern discovery algorithm.

3.2. Beat Tracking
The basic idea is to take the audio recording as an ob-
served variable y, and try to infer the hidden variables
x of bar position, tempo, and metre, based on a hidden
Markov model (HMM) [13, 23, 24]. We track beats us-
ing bar position, and agree with Gouyon et al. [25] that:
(1) tracking main beats and then subdividing is prefer-
able to direct quantisation; (2) beat tracking based on
a continuous feature calculated from audio is preferable
to beat tracking based on estimated note onsets (which
are available to us via the system for multiple F0 estima-
tion). The joint probability distribution of a sequence of
hidden states x1:K and observed states y1:K in our HMM
factorises as

P(y1:K ,x1:K) = P(x1)
K

∏
k=2

P(xk|xk−1)P(yk|xk). (1)

The state space of the hidden variables x is the Cartesian
product of three discrete sub-state spaces with the fol-

lowing hidden variables: the position inside a bar repre-
sented by equidistant metric positions m ∈ {1,2, ...,M},
the tempo n ∈ {1,2, ...,N} representing integer multiples
of ∆m

∆t where ∆t = 20 ms is the audio frame length, and
the metre r ∈ {3

4,
4
4}. Thus, a state in this state space is

notated xk = [mk,nk,rk]. To aid inference in this large
state space (the total number of states is M×N ×R =
1920× 35× 2 = 134,400), the system is restricted to
three possible state transitions for each state and time
frame k, as modeled by the transition probabilities for
the tempo variable n:

P(nk|nk−1) =


1− pn, nk = nk−1,
pn
2 , nk = nk−1 + 1,
pn
2 , nk = nk−1−1,

(2)

where pn = .02 is the probability of a tempo change. In
reality, it could be that the tempo varies more than this
from one audio frame to the next, but the restriction is
applied in the interests of computational feasibility.

The bar position mk at time frame k is defined determin-
istically by

mk = [(mk−1 + nk−1−1) mod (M · rk−1)]+ 1, (3)

and the metre is assumed to be constant throughout a
piece (rk = rk−1).

The observed states y are represented by a modified onset
feature, the LogFiltSpecFlux [26], which is computed for
two frequency bands (below 250 Hz and above 250 Hz).
Considering the onsets in the bass band separately was
found to produce higher downbeat and metre detection
accuracy [13]. The observation likelihood P(yk|mk,rk)
is modeled by a Gaussian mixture model (GMM) with
I = 2 components as

P(yk|mk,rk) =
I

∑
i=1

wmk,rk,i ·N (y; µmk,rk,i,Σmk,rk,i), (4)
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where µmk,rk,i is the mean vector, Σmk,rk,i is the covariance
matrix, and wmk,rk,i is the mixture weight of component i
of the GMM. The parameters of the observation model
were trained on pop, rock, and ballroom dance music
datasets from [15, 27, 13]. We did not retrain the model
for the current application to piano music. Finally, the
sequence of hidden states with the maximum a posteri-
ori probability (MAP) P(m1:K ,n1:K ,r1:K |y1:K) is obtained
using the Viterbi algorithm [24]. Once the MAP-state se-
quence is computed, the set of beat times are obtained by
interpolating mMAP

1:K at the corresponding bar positions.

3.3. Quantisation and Pitch Spelling
The ontimes in a deadpan-symbolic representation of a
piece of music are in almost all cases expressible as
τ = α + β , where α ∈ N and β ∈ Fn, where n is small
and Fn is the Farey series of order n (‘the ascending se-
ries of irreducible fractions between 0 and 1 whose de-
nominators do not exceed n’ [28, p. 23]). For exam-
ple, F4 = { 0

1 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1} will suffice here. A solu-

tion to the quantisation problem consists of a function
f : R→ N⊕Fn for mapping an observed onset t ∈ R to
an ontime τ ∈ N⊕Fn.
As shown in Fig. 2, we use the beat-tracking algorithm
to estimate the time in seconds at which crotchet beats
(in N) should occur in input audio, and, by interpolation,
we estimate the time at which a select number of offbeats
(members of N⊕F4) should occur. Labelling this set of
estimated times T , we have a bijection between T and
N⊕F4. For an observed onset t ∈ R, the quantisation
function f maps t to the closest member of T , and thence
to the corresponding ontime in τ ∈ N⊕F4.
The final step prior to pattern discovery is to apply a
pitch-spelling algorithm to the quantised (ontime, MIDI
note)-pairs. Pitch spelling makes it possible to use a nu-
meric representation of height on the staff (also called
morphetic pitch number or MPN, see [21]) rather than
MIDI note number. This is preferable because many pat-
terns are translationally exact in the former domain but
not the latter. For example, the beginning of P1 and P2 in
Fig. 1A have MPNs 68,69,67 and 69,70,68 respectively
(translationally exact), and MIDI numbers 74,75,72 and
75,77,74 (not translationally exact). Our pitch-spelling
component is straightforward, consisting of an estimate
of the key of the entire piece, followed by assignment of
the most likely pitch class given the key [7].

3.4. Pattern Discovery
For pattern discovery, we use the Structure Induction Al-
gorithm for r superdiagonals and Compactness Trawler,

with Categorisation and FingerPrinting (SIARCT-CFP)
[16]. It begins with a point-set representation D of a
piece, here using (ontime, MPN)-pairs as indicated in
Fig. 2. SIAR calculates maximal subsets Uh of D such
that Uh +v is also a subset of D for some vector v. It does
so without calculating all pairwise differences (d− e)
where d,e ∈ D, and is therefore preferable to more ex-
haustive algorithms [21]. Letting the output of SIAR be
U = {U1,U2, . . . ,UH}, the Compactness Trawler (CT,
[29]) iterates over each member of U , measuring the
proportion of contemporaneous notes that are in succes-
sively larger regions of Uh (called compactness [21]), re-
turning only those subsets that have compactness greater
than some threshold a and contain at least b points. There
is also a parameter for the definition of a region in the
point set—lexicographic or convex hull. Typically, the
output of this process, V = {V1,V2, . . . ,VJ} is far smaller
than U = {U1,U2, . . . ,UH}, i.e., J � H. Members of
V are pruned further by removing a set Vj that has too
few unique pitch classes (< 3) and/or that is too short
(ontimeend−ontime1 < 2 crotchet beats).

It is still possible that members of V are musically
very similar to one another, so a Categorisation pro-
cess (the ‘C’ of ‘CFP’) is used to reduce redunancy.
We calculate the symbolic musical similarity of select
pairs from V , returning only one of Vj and Vj′ in
the event that the similarity s(Vj,Vj′) is greater than
some threshold c [16]. A perceptually validated model
for rating musical importance [30] is used to choose
between Vj and Vj′ , as well as to avoid calculation
of all pairwise similarities. The output of categori-
sation is a further reduced set W = {W1,W2, . . . ,WL},
where a lower similarity threshold c reduces the num-
ber L of output sets, and vice versa. Finally, the sym-
bolic FingerPrinting (FP) method [31, 16] is applied to
each Wl to identify more or less exact occurrences of
Wl in D. Thus, the output of SIARCT-CFP is a set
X =

{
{Xl,1,Xl,2, . . . ,Xl,ol} : l = {1,2, . . . ,L}

}
of L mu-

sical patterns, where Xl,1 is a point set of (ontime, MPN)-
pairs corresponding to the prototypical occurrence of
some motif/theme/section, and Xl,2,Xl,3, . . . ,Xl,ol are fur-
ther occurrences varying in exactness.

In the evaluation, SIARCT-CFP was run twice on each
point-set representation, once with parameters known to
favour the discovery of motifs,1 and again with param-

1In the symbolic domain, a = 9/10, b = 4, region =
convex hull, c = 1/3; for audio, a = 4/5 to handle noisier data.
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eters aimed toward the discovery of repeated sections.2

Outputs of each run were concatenated for evaluation.
Please see [16] for more details.

4. EVALUATION
The main purpose of this section is to evaluate the per-

formance of pattern discovery algorithms on automat-
ically transcribed audio, compared with symbolic rep-
resentations of the same music. First, however, it is
necessary to quantify and interpret the performance of
our transcription system. In the past this has been done
using a frame-based approach [10], which is adequate
for evaluating the multiple F0 component of the system,
but overlooks the beat-tracking and quantisation com-
ponents. Here we evaluate the performance of the beat
tracker in isolation, then we provide an holistic evalua-
tion of the transcription system (beat tracker, quantisa-
tion, and multiple F0 components), and finally we evalu-
ate the pattern discovery algorithms on transcribed audio,
compared with symbolic representations.

4.1. The Dataset
The evaluation makes use of five movements or pieces
from the JKUPDD, containing a total of 26 motifs,
themes, and repeated sections [17]. They are:

1. Fugue in A minor BWV889 by Johann Sebastian
Bach (1685–1750);

2. The third movement (Scherzo) from Piano Sonata
no.1 in F minor op.2 no.1 by Ludwig van Beethoven
(1770–1827);

3. Mazurka in B[ minor op.24 no.4 by Frédéric
Chopin (1810–1849);

4. ‘The silver swan’ (1612) by Orlando Gibbons
(1583–1625);

5. The second movement (Menuetto) from Piano
Sonata no.4 in E[ major K282 by Mozart.

The deadpan-symbolic representations are derived from
KernScores (http://kern.ccarh.org/), and the ground-truth
patterns are based on the annotations of three musicolog-
ical works [4, 5, 32]. We created deadpan-audio versions
of the pieces by synthesising the symbolic representa-
tions in Logic Express 9.0.0 at an appropriate tempo with

2In the symbolic domain, a = 1, b = 50, region =
lexicographic, c = 4/5; for audio, again a = 4/5.
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Fig. 3: F1 score for the beat tracker on deadpan (cir-
cles) and performed (triangles) audio for five pieces from
JKUPDD [17].

the Yamaha Piano Hall sample. The deadpan-audio files
were transcribed using the process explained in Sec. 3, as
were performed-audio files for each piece.3 The first au-
thor annotated onbeat times in the performed-audio files,
independently of the other authors, for the purposes of
evaluating the beat tracker.

4.2. Evaluation of the Beat Tracker
For each ground-truth onbeat time, we determine if the

beat tracker estimates an onbeat time within a ±70 ms
window. If so, this is counted as a true positive (TP),
and if not, this is counted as a false negative (FN). Any
remaining onbeat times estimated by the beat tracker are
counted as false positives (FP). The precision is then P =
TP/(TP + FP), the recall R = TP/(TP + FN), and the F1
score plotted in Fig. 3 is F1 = 2PR/(P + R). F1 score
is a standard metric in the Audio Beat Tracking task of
the Music Information Retrieval Evaluation EXchange
(MIREX).4 (This is also the general identity for F1 used
in other evaluations below.)

As indicated by the circular markers in Fig. 3, Krebs
et al.’s [13] algorithm provides perfect (or near-perfect)
beat-tracking solutions for deadpan-audio versions of
the pieces in our dataset. The algorithm also has
strong results for performed-audio versions of pieces 1

3The performers of the five pieces were, respectively, Glenn Gould
(Sony, 1993), Friedrich Gulda (Amadeo, 1992), Arthur Rubinstein
(RCA Victor Europe / BMG, 1991), the first author, and again Gulda
(Deutsche Grammophon, 2006).

4http://www.music-ir.org/mirex/wiki/2013:Audio Beat Tracking
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(J. S. Bach), 4 (Gibbons), and 5 (Mozart), but weaker
results for performances of pieces 2 (Beethoven) and 3
(Chopin). This algorithm was highly competitive with
other state-of-the-art systems in the most recent MIREX,
so its weaker performance on these two pieces is a re-
liable gauge of the current state of the art, rather than
being indicative of a defective approach. Auditioning
the results, it was apparent that the beat tracker vacil-
lated between crotchet beats and alternate crotchet beats
in piece 2 (Beethoven), leading to poor recall. For piece
3 (Chopin), the amount of rubato employed made accu-
rate tracking very difficult.

4.3. Holistic Evaluation of the Transcriptions
When an algorithm outputs a perfect beat-tracking so-

lution for an audio file, which is the case for Krebs et
al.’s [13] algorithm across deadpan audio versions of our
dataset, the precision of a whole transcription system
(i.e., multiple F0 estimation, beat tracking, and quanti-
sation) can be calculated by |Y ∩Z|/|Z|, and the recall by
|Y ∩Z|/|Y |, where Y is the set of (ontime, MIDI note)-
pairs for a ground truth, symbolic representation, and Z
is the set of transcribed (ontime, MIDI note)-pairs. If,
however, a beat-tracking solution contains false positives
or false negatives, there will be shift and/or scale errors
in the transcription, relative to the ground truth. With
regards shift errors, a metric is required that sums the
number of correctly transcribed notes within each shifted
segment, weighted punitively by the number of shifts,
so that a transcription containing fewer false beats and
therefore fewer shifts will score better than a transcrip-
tion with more shift errors. We use two metrics to fulfil
this requirement, called transcription precision and tran-
scription recall. Their full definition is deferred to the
Appendix, so as not to impede the reporting of results.

Figure 4 gives values of transcription precision and tran-
sription recall for deadpan- and performed-audio ver-
sions of the dataset pieces. Paralleling the results of the
beat-tracking algorithm, the transcription system works
well for deadpan audio, with consistently high values of
recall. False-positives are more of a problem in dead-
pan audio than in performed audio, as indicated by the
switching of dotted and solid lines between circle and
triangle markers in Fig. 4. This is likely because volume
levels in the deadpan-audio representations were uniform
for prominent and accompanimental material alike, lead-
ing to more false-positive doubled octaves than when ac-
companimental material was played softly by human per-
formers. The transcription of Rubinstein’s performance
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Fig. 4: Evaluation of the transcription system on dead-
pan (circles) and performed (triangles) audio for five
pieces from JKUPDD [17].

of piece 3 (Chopin’s Mazurka) proved particularly dif-
ficult, but this was to be expected given the rubato em-
ployed in playing mazurkas.

4.4. Evaluating the Pattern Discovery Algo-
rithm in Symbolic and Audio Domains
The main component of the evaluation involved running
the pattern discovery algorithm SIARCT-CFP [16] on
deadpan-symbolic, deadpan-audio, and performed-audio
representations of the five pieces. The algorithm output
for each piece and each representation was assessed us-
ing establishment recall, establishment precision, occur-
rence recall, and occurrence precision [17], as outlined
in Sec. 2. To recap, the establishment metrics measure
the extent to which an algorithm can discover at least
one occurrence of each ground truth repeated pattern;
the occurrence metrics assess the extent to which an al-
gorithm finds all occurrences of each ground truth pat-
tern, given that it has discovered one occurrence. The
results are shown in Figs. 5A–D respectively. For the
deadpan-symbolic representation, the establishment re-
call is high (Fig. 5A, solid line), as are the occurrence
metrics for a similarity threshold of .75 (Figs. 5C and 5D,
solid lines with circle markers). The strength of estab-
lishment recall suggests that SIARCT-CFP is effective
at discovering at least one occurrence of each ground-
truth motif/theme/section in deadpan-symbolic represen-
tations. The strength of the occurrence metrics suggests
that SIARCT-CFP returns the relevant exact and inexact
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occurrences of discovered patterns. The precision of the
pattern discovery algorithm is in most need of attention,
with only one in three patterns being relevant in the best-
case scenario (Fig. 5B, solid line, piece 4, Gibbons).

For deadpan-audio representations, performance of the
discovery algorithm fell by approximately 25% com-
pared with that of the algorithm applied to symbolic rep-
resentations of the same pieces (c.f. means of .780 and
.609 give a 21.9% decrease in Fig. 5A, .215 and .149
give a 30.8% decrease in Fig. 5B, .747 and .519 give
a 30.5% decrease in Fig. 5C, and .783 and .629 give a
19.6% decrease in Fig. 5D, resulting in a mean percent-
age decrease of 25.7%). A corresponding comparison
for the performed-audio representations revealed an ap-
proximate 50% drop in performance compared with the
performance of the algorithm applied to symbolic rep-
resentations. Piece 4 (Gibbons) is above this trend in
both deadpan- and performed-audio versions, whereas
the performed-audio version of Piece 3 (Chopin) pulls
down the mean. These pattern discovery results paral-
lel the quality of the initial audio-symbolic transcription,
where transcription of both deadpan and performed ver-
sions of piece 4 (Gibbons) was strongest, and transcrip-
tion of the performed version of piece 3 (Chopin) was
weakest (c.f. triangles in Figs. 4 and 5A).

5. DISCUSSION
In this study, the first on structural segmentation of poly-
phonic audio to gain direct access to note content, we
have found a drop in metrics of∼ 25% for the pattern dis-
covery algorithm SIARCT-CFP [16] applied to deadpan-
audio representations, compared with deadpan-symbolic
representations. In the majority of cases, the algorithm is
capable of establishing the existence of motifs, themes,
and repeated sections, as well as returning more or less
exact instances of patterns. There was a further drop in
the metrics, comparing performed-audio representations
with deadpan-symbolic representations, with poor tran-
scription of one piece (Chopin’s mazurka) being particu-
larly influential here. An example of the type of pattern
discovered by SIARCT-CFP for Gulda’s performance of
the Mozart movement is shown as T1,T2 in Fig. 1E. This
is a successful discovery, closely related to the ground
truth motif annotated as P1,P2 in Fig. 1A. By showing
the note content, we are able to pinpoint which notes are
part of the pattern, going beyond existing work on seg-
mentation [1, 2, 3, 6, 18, 19, 20]. The evaluation dataset
is of modest size, due to the time and expertise required
to convert music analysts’ annotations into a machine-

readable ground truth, but our intention is that these mu-
sic data and evaluations can act as a benchmark for future
work attempting to bridge the audio-symbolic gap.5

For piece 4 (Gibbons), whose transcription from deadpan
audio scored F1,T = .828, the establishment recall fell
by only .013 (= .612− .599) between deadpan-symbolic
and deadpan-audio versions (Fig. 5A). This result might
suggest that perfect transcription is not a prerequisite for
the discovery of meaningful patterns in polyphonic mu-
sic audio. For piece 1 (J. S. Bach), however, with a simi-
lar transcription F1,T = .831, the fall-off in establishment
recall is greater (.267 = .857− .590). One explanation
is that SIARCT-CFP seems to perform best for repeated
sections and themes, and less well for motifs. If motifs
dominate in the ground truth for a piece, the fall-off in
recall may be greater. Compared to music analysts’ an-
notations, where often motifs are nested within themes,
SIARCT-CFP parses the entire piece to discover motifs.
This parsing of entire piece for motifs is also a reason
behind the poor establishment precision in Fig. 5B, and
is a strategy that may be revised in the future.

The current paper is one of several in the MIR literature
that attempt to combine components designed for spe-
cific purposes (here, beat tracking and multiple F0 es-
timation) in order to undertake some further task (here,
pattern discovery). Other examples include [33], where
music/voice separation is achieved following extraction
of repeated patterns, and [34], where beat tracking and
multiple F0 estimation are incorporated in one unified
system. As we continue to close the audio-symbolic gap,
methods that combine existing components are likely to
become more commonplace. It is timely, therefore, to
ask whether it is sufficient to arrange such components
in a feed-forward, bottom-up manner, or if there is some
advantage to be gained by allowing both bottom-up and
top-down communication between components. Above,
the quality of the beat-tracking solution was a key deter-
minant in the success of the pattern discovery algorithm,
so in this respect a bottom-up system is vulnerable to
propagation of error from earlier components. Future
work should consider whether transcription and pattern
discovery can be mutually beneficial, with information
about discovered patterns helping to identify errors in
transcription, which in turn could improve the discovery
of motifs, themes, and repeated sections.

Our solution for multiple F0 estimation generalises well
to various piano sounds, but it remains to be seen if a

5Please see www.tomcollinsresearch.net for supporting material.
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Fig. 5: Evaluation metrics for the SIARCT-CFP pattern discovery algorithm, run on symbolic and transcribed-audio
representations of movements/pieces by J. S. Bach, Beethoven, Chopin, Gibbons, and Mozart.

retrained network can generalise to audio material for
other or multiple instruments. We are keen to investi-
gate this matter, as the type of nested patterns shown in
Fig. 1A are certainly not restricted to classical music. For
instance, the excerpt 3′04′′–3′36′′ of ‘Milk’ from the al-
bum Aka Shake Heartbreak (2004) by the Kings of Leon
consists of a repeating bass pattern lasting four bars, dur-
ing which time there are four occurrences of a pattern
in the lead guitar. While we accept that structural seg-
mentation has an appealing simplicity, and hence utility
in music information retrieval, we argue that the annota-
tions made possible in this paper are more accurate and
meaningful, depicting multiple musical structures simul-
taneously, and affording direct access to note content.
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APPENDIX
Let Y be the set of (ontime, MIDI note)-pairs for a
ground truth, symbolic representation, and Z be the set
of transcribed (ontime, MIDI note)-pairs.

1. Let v1 be the most frequent vector in the array
∆(Y,Z) = (yi− z j)i∈I, j∈J , where I = {1,2, . . . , |Y |}
indexes the set Y , J = {1,2, . . . , |Z|} indexes Z, and
v1(2) = 0, meaning these are matches between ele-
ments of Y and Z for correctly estimated MIDI num-
bers. Suppose v1 occurs k1 times in ∆(Y,Z).

2. Remove all indices from I and J that are associated
with instances of the most frequent vector, as well
as the corresponding elements of ∆(Y,Z). Now (and
in general) let vn be the most frequent vector in the
new version of ∆(Y,Z), still requiring vn(2) = 0.
Suppose vn occurs kn times in ∆(Y,Z).

3. Repeat step 2 until, on the Nth occasion, either I or
J are empty, or no vn exists satisfying vn(2) = 0.

The transcription precision and transcription recall are

PT (Y,Z) =
1
|Z|

N

∑
n=1

f (n)kn, (5)

RT (Y,Z) =
1
|Y |

N

∑
n=1

f (n)kn, (6)

where f (n) is a punitive weighting function, and f (n) =
1/n will be used here. Another weighting strategy would
be to weight punitively by the absolute size of the shift
error for each segment, |vn(1)|, giving a function such as
f (n) = min{1,1/|vn(1)|}. The F1 measure is calculated
in the usual way. Precision and recall for a transcription
containing no shift errors may be marginally greater than
|Y ∩Z|/|Z| and |Y ∩Z|/|Y | respectively. This is because
f (n)k1 = 1 · |Y ∩Z|, and the summands are negligible for
n > 1, especially when weighted by f (n). Scaling errors
are considered a more serious problem, and no attempt is
made to reward solutions containing multiple segments
that are transcribed correctly up to different scale factors.
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