
Stravinsqi/De Montfort University
at the MediaEval 2014 C@merata Task

 Tom Collins
Faculty of Technology
De Montfort University

Leicester, UK
+44 116 207 6192

tom.collins@dmu.ac.uk

ABSTRACT
A summary is provided of the Stravinsqi-Jun2014 algorithm and
its performance on the MediaEval 2014 C@merata Task.
Stravinsqi stands for STaff Representation Analysed VIa Natural
language String Query Input. The algorithm parses a symbolic
representation of a piece of music as well as a query string
consisting of a natural language expression, and identifies where
event(s) specified by the query occur in the music. The output for
any given query is a list of time windows corresponding to the
locations of relevant events. To evaluate the algorithm, its output
time windows are compared with those specified by music experts
for the same query-piece combinations. In an evaluation consist-
ing of twenty pieces and 200 questions, Stravinsqi-Jun2014 had
recall .91 and precision .46 at the measure level, and recall .87 and
precision .44 at the beat level. Question categories and examples
are analysed where the Stravinsqi algorithm was less successful.
Important potential applications of this work in web-based music
notation software and musicological research are also discussed.

1. INTRODUCTION
There is a long-standing interest in querying music represented as
(or derived from) staff notation. Collections of themes/incipits [2]
provide an example of such an interest, and these predate even the
introduction of computing into musicological research. With the
development of digital formats such as kern [8] came algorithmic
theme-finders [9], and research based on algorithms that identified
scale degrees and melodic intervals automatically [1, 20].
Currently, some of this functionality lives on in a Python package
for computational musicology called music21 [5]. It is fair to say,
however, that technology does not yet exist capable of:

1. Accepting a music-analytic query in the form of a natural-
language string, such as “perfect fifth followed by a D4”;

2. Reliably retrieving instances of higher-level music-
theoretic concepts from staff notation, such as functional
harmonies (e.g., “Ib”) or cadences (e.g., “interrupted
cadence”).

The C@merata task [16] challenges researchers to address both of
these issues. Given a natural language query and a piece of music
in digital staff notation representation, the C@merata task
evaluates an algorithm’s ability to identify where one or more
events specified by the query occur in the music. Time windows
output by an algorithm are compared with time windows defined
by a music theory expert. In the evaluation, algorithms that do not
miss too many correct time windows will score well on recall, and
those that do not return too many false-positive time windows will
score well on precision.

Across the English-speaking world, there are many students
already benefiting from interactions with web-based music
notation software. Noteflight, for instance, enables users to create
and share music notation online, with various educational features
for high school and college settings.1 One application of an
algorithm that performs well on the C@merata task would be
within such an interface, so that students could query and hear/see
results for the pieces with which they are working, in order to
develop their understanding of various music-theoretic terms.
Other applications include continued and enhanced support of
musicological research [1, 20], and informing solutions to various
tasks in music informatics research, such as expressive rendering
of staff notation [7] or automatic generation of music [4], both of
which may benefit from knowledge of events such as cadences
and/or changes in texture.

The remainder of this paper is devoted to describing an algorithm
called Stravinsqi that was submitted to the C@merata task.
Several annotated music examples demonstrate in more detail
Stravinsqi’s ability to extract instances of certain query types from
staff notation (harmonic intervals, functional harmonies,
cadences, and textures). The results of Stravinsqi on the
C@merata task are then presented and discussed.

2. APPROACH
2.1 Overview
The Stravinsqi-Jun2014 algorithm that was entered in the
C@merata task is embedded in a Common Lisp package called
MCStylistic-Jun2014 (hereafter, MCStylistic), which has been
under development since 2008 [4].2 MCStylistic includes
implementations of several algorithms from the fields of music
information retrieval and music psychology, such as the chord-
labelling algorithm HarmAn [12], the Krumhansl-Schmuckler
key-finding algorithm [10], keyscapes [14], and the Structure
Induction Algorithm [11].

From a natural language perspective, there are two types of
queries: compound queries such as “a Bb followed a bar later by a
C followed by a tonic triad”, and ordinary queries such as “perfect
cadence”. Stravinsqi checks the query string for compound
queries and splits it into N query elements if necessary, e.g., “a
Bb” and “a bar later by a C” and “tonic triad”.

The piece is converted from its MusicXML format to kern format
using the xml2hum script [15].3 The kern file is parsed by import
functions in MCStylistic to give the following representations,
which are referred to as point sets:

1 http://www.noteflight.com
2 http://www.tomcollinsresearch.net
3 http://extras.humdrum.org/bin/osxintel64/

Copyright is held by the author/owner(s).

• Instrument/staff and clef names at the beginning of each
staff;

• Bar numbers where time signatures are specified, together
with the number of beats per bar, the type of beat, and the
corresponding ontime. Ontime is the incrementing time in
staff notation measured in crotchet beats, with 0 for bar 1
beat 1. A note beginning at measure 3 beat 1 in a piece
with four crotchets per bar has ontime 8, for example;

• A point-set representation of the piece, where each point
represents a note. The five-dimensional point consists of
the ontime of the note, its MIDI note number, its
morphetic pitch number [11], its duration in crotchet beats,
and its numeric staff number (with zero for the top staff).
Morphetic pitch number is a numeric encoding of staff
height, with 60 for C♭4, C♮4, C♯4, 61 for D♭4, D♮4,
D♯4, etc. There is a bijection between pitch and (MIDI
note, morphetic pitch)-pairs [4], meaning if the MIDI note
and morphetic pitch numbers of a note are known, then so
are its correct pitch spelling and octave number. And vice
versa;

• A point-set representation of the piece with three extra
dimensions, one each for articulation, dynamics, and lyrics
information. If, for example, a note is marked marcato,
then the dynamics entry of the point will contain “>”;

• A point-set representation of the piece, where each point
represents a notated rest.

Each query element is passed to several sub-functions (e.g.,
harmonic-interval-of-a, duration&pitch-time-
intervals, rest-duration-time-intervals, etc.),
along with the appropriate point set(s). For example, the function
rest-duration-time-intervals takes a query element,
the point set of notated rests, and the point set of instrument/staff
and clef names as its arguments, because these three information
sources are sufficient for locating rests of specific duration
(perhaps also constrained to specified voices). In general, if the
query is relevant to the Stravinsqi sub-function, the sub-function
should output time intervals where events corresponding to that
query occur. As an example, if the query element is
“semiquaver F♯”, then the function duration&pitch-time-
intervals should output all time intervals where a semiquaver
F♯ occurs, whereas for this same query the output of the function
harmonic-interval-of-a should be empty.

Since there is not space here to describe all of the sub-functions
called by Stravinsqi, the next subsection will address a
straightforward sub-function harmonic-interval-of-a,
and then more involved sub-functions for identifying functional
harmonies, cadences, and textures.

If a query string is ordinary (contains one element only), then the
time windows in the first nonempty sub-function’s output are
passed to a final function that converts the time windows into the
XML format required by the task. Calls to the sub-functions are
ordered by most to least specific (e.g., duration&pitch-
time-intervals is more specific than pitch-time-
intervals), so that if both an earlier output and a later output
are nonempty, the output for the more specific rather than the less
specific sub-function is returned.

If a query string is compound, then sub-function fm will have a set
of output time windows Tm,n for query element n. Stravinsqi will

allow any plausible sequence of time windows τ1 ∈ Tm(1),1, τ2 ∈
Tm(2),2,…, τN ∈ Tm(N),N to be passed on for further processing.
Plausibility here means that two time windows [a, b] and [c, d] are
adjacent (b = c) if the original query contained “followed by” or
“then”, or that two time windows are the appropriate distance
apart if the original query contained, say, “followed two bars later
by”. A plausible sequence of time windows τ1 = [a1, b1], τ2,…,
τN = [aN, bN] is merged into one time window [a1, bN] and passed
to the final function for conversion into the XML format required
by the task.

2.2 Harmonic Intervals
To identify instances of a specified harmonic interval, the point-
set representation of a piece is converted into minimal segments
[12], delimited by times at which notes begin and end. The first
few minimal segments for the piece shown in Figure 1 are
S0 = {(−1, G2, 1, 3), (−1, G3, 1, 2), (−1, D4, 1, 1), (−1, D4, 1, 0)},
S1 = {(0, G2, 2, 3), (0, B3, 1, 2), (0, D4, 1, 1), (0, G4, 1, 0)},
S2 = {(0, G2, 2, 3), (1, B3, 1/2, 2), (1, D4, 1, 1), (1, G4, 1/2, 0)},
S3 = {(0, G2, 2, 3), (1, D4, 1, 1), (3/2, C4, 1/2, 2), (3/2, A4, 1/2, 0)}.

Importantly, a note can belong to more than one minimal segment.
For example, the second D4 in Violin II b.1 belongs to both S2
and S3. The second step in identifying the relevant harmonic
intervals is to convert the written interval into one or more target
pairs of MIDI note and morphetic pitch intervals. For example, a
“major second” would correspond to 2 MIDI note intervals (2
semitones) and 1 morphetic pitch interval (1 step on the staff), so
the target pair would be (2, 1). A “second” would require two
target pairs: (2, 1) for “major second”, and (1, 1) for “minor
second”. For each minimal segment S, the maximal translatable
pattern (MTP) [11] of the target pair(s) is calculated. The MTP is

Figure 1. Prelude to Te Deum H146 by Marc-Antoine
Charpentier (1643-1704), annotated with a bar number
error (tick and cross), intervals of a harmonic second
(arrows), functional harmonies below each staff, and

three perfect cadences (black boxes).

the set of all points that translate by the target pair on to some
other point in the minimal segment, which corresponds to the set
of all notes that form a harmonic interval corresponding to the
target pair. If a minimal segment S has a nonempty MTP for the
target pair, then the time window where S sounds contains the
specified interval. This approach to calculating harmonic intervals
is thorough, in the sense that it considers notes within and
between voices (as required by the task description), and notes
that sound together at a specified interval but do not necessarily
begin together. Almost all the harmonic seconds in Figure 1
(indicated by arrows) are of this variety.

2.3 Harmonic Analysis and Cadences
Example output of the Stravinsqi algorithm’s sub-function for
functional harmonic analysis is shown below each staff in
Figure 1. The algorithm is over-labelling in bb.3-4, but otherwise
the output is quite promising. Recent remarks in musicological
circles suggest that an algorithm capable of sensible harmonic
analyses does not yet exist and may be some way off [17, 18].
This could be lack of dialogue between musicological and music
information retrieval communities, however. The HarmAn
algorithm [12] is over a decade old, and while, admittedly, it
provides chord labels (e.g., G maj, D7) rather than functional
harmonic labels (e.g., I, V7), HarmAn is a useful starting point.
Included in MCStylistic, the Stravinsqi algorithm’s sub-function
is called HarmAn->Roman, an extension of the HarmAn
algorithm, and it does provide functional harmonic labels and
inversions, as shown in Figure 1.

The HarmAn algorithm [12] begins by converting a point-set
representation of a piece into minimal segments (cf.
subsection 2.2). A segment is defined as a sequence of adjacent
minimal segments, and so there are n(n − 1)/2 possible segments
for n minimal segments. Each segment is compared with
templates representing different chords (e.g., C maj, D♭ maj,
D maj,…, C7, D♭7, D7, etc.), and scored according to how similar
it is to each template. The template with highest score is assigned
as a provisional chord label. The final part of the HarmAn
algorithm consists of a linear-time method for traversing these
segment scores in temporal order and outputting a set of chord
labels, without requiring an exhaustive search over all possible
segment combinations [12]. My extension to HarmAn, called
HarmAn->Roman, involves estimating the overall key of the
input piece/excerpt, using this to convert chord labels to
functional harmonic labels, and adding information about
inversions.

An issue faced when designing chord labelling algorithms is the
balance to be struck between under- and over-labelling
progressions. An example of the HarmAn->Roman solution to
this issue is shown in Figure 2. An under-labelled solution
(prefaced by UL) places labels at each beat, whereas an over-
labelled solution (preface OL) is busier for the last five beats of
the passage in particular. The HarmAn->Roman output (prefaced
by AO for algorithm output) is more similar to the under-labelled
solution than it is to the over-labelled solution. A harmony
instructor might prefer the under-labelled solution to the over-
labelled solution in this instance, as the end of the latter seems
overly fussy. In this sense, HarmAn->Roman does well. If the
passage is queried for an occurrence of Ib, however, HarmAn-
>Roman does less well, because it has not split b.3 beat 4 into
two labels (I and Ib), and so the occurrence of Ib is not found.

The Stravinsqi algorithm’s sub-function for cadence identification
is based in large part on its use of HarmAn->Roman for

functional harmonic analysis. Three perfect cadences identified by
the cadential sub-function, cadence-time-intervals, are
shown in Figure 1, indicated by black boxes with grey shading.
The function cadence-time-intervals forms bigrams
from a harmonic labelling (e.g., the labels I, V7d, I, V, I, IV
become (I, V7d), (V7d, I), (I, V), (V, I), (I, IV)). If a perfect
cadence is to be sought, then indices of bigrams relevant to perfect
cadences are returned. (E.g., occurrences of (V, I) or (V7, I) or
(V, i), etc. would be relevant.) If (A, B) is a relevant bigram and B
has ontime t, then t must correspond to either beats one or three of
the bar in a piece in common time, in order for (A, B) to be
admitted as a perfect cadence. Since, for a perfect cadence, it is
only “occasionally stipulated that the final chord must have the
tonic in the highest part” [13], no further requirements are
stipulated. Looking at the three perfect cadences identified in
Figure 1, the last is of the variety with the tonic in the highest part,
and the first two have the mediant in the highest part.

2.4 Textural Analysis
The Stravinsqi algorithm’s sub-function for textural analysis
outputs quadruplets: the first element in a quadruplet is the
beginning of a time window where a texture label applies; the
second is the end of that time window; the third is a texture label
(monophonic, homophonic, melody with accompaniment,
polyphonic, contrapuntal) or empty, and the fourth is a value in
[0, 1] expressing the confidence with which the texture label was
assigned. Thresholds for these labels can be altered so that, for
instance, a piece consisting entirely of monophony apart from the
final bar might be considered entirely monophonic if the
monophony threshold is lenient, or monophonic up until the last
bar and then homophonic if the monophony threshold is more
strict.
The texture sub-function operates by identifying points
(representing notes) that belong to windows [0, s], [h, h + s],
[2h, 2h + s], where the window size s = 4 crotchet beats and the
hop size h = 1 crotchet beat, and sending these point collections
for independent textural analysis. When a label has been assigned
to each collection, adjacent windows that share labels are elided.

Independent textural analysis of a windowed excerpt begins with
testing whether the label “monophonic” applies, by calculating
whether |X ∩ Y|/|Y| is greater than or equal to the monophonic
threshold, where X is the set of (ontime, MIDI note)-pairs in the

Figure 2. Bars 3-4 of the chorale setting “Straf mich
nicht in deinem Zorn” BWV115.6 (R38) by Johann

Sebastian Bach (1685-1750), annotated with algorithm-
output (AO) functional harmonies, and under-labelled

(UL) and over-labelled (OL) expert annotations.

excerpt’s skyline and Y is the set of (ontime, MIDI note)-pairs in
the excerpt.4 If the skyline set is equal to (or very nearly equal to)
the whole set of notes in an excerpt, then likely the windowed
excerpt is monophonic. If the excerpt is not monophonic, textural
analysis continues with testing whether the label “homophonic”
applies, by calculating whether |X ∩ Y|/max{|X|, |Y|} is greater
than or equal to the homophonic threshold, where X is the set of
ontimes in the excerpt’s skyline and Y is the set of ontimes for
notes that are in the excerpt but not in the skyline (the
accompaniment). If the skyline’s ontimes and the
accompaniment’s ontimes are very similar, then likely the excerpt
is homophonic. If the excerpt is not homophonic, textural analysis
continues with testing whether the label “melody with
accompaniment” applies, by calculating two quantities: first, r1 =
|X ∩ Y|/max{|X|, |Y|}, where X is the skyline calculation applied
twice to the excerpt, and Y is what remains; second, r2 = ρt /(3ρb),
where ρt is the rhythmic density (mean number of notes per
crotchet beat, [6]) in the top staff and ρb is the rhythmic density of
the staff immediately below the top staff. If either r1 or r2 are
greater than or equal to the melody-with-accompaniment
threshold, then this label applies. The quantity r1 is perhaps not
easily interpreted, but it is the same idea for testing homophony,
applied to just the accompaniment. The quantity r2 tests whether
the skyline is three or more times as active (in terms of notes per
crotchet beat) than the accompaniment. If so then the excerpt’s
texture may be considered “melody with accompaniment”.
Finally, independent textural analysis tests whether the label
“polyphonic” (vocal music) or “contrapuntal” (instrumental
music) applies to an excerpt, by extracting the notes from each
staff and testing whether these note collections would each be
considered monophonic. If so then the excerpt is labeled
polyphonic or contrapuntal. If not, then the excerpt does not have
a texture label assigned.

Example output of Stravinsqi’s textural analysis sub-function is
shown in Figure 3. The piece begins with a sixteen-bar section
that bisects into eight bars ending on an imperfect cadence,
followed by eight similar bars ending on a perfect cadence. The
excerpt begins with right-hand material that is more active in
terms of notes per crotchet beat than the left hand. The label
“melody with accompaniment” shown in Figure 3 for bb.1-8
seems appropriate, therefore, as does the maximal level of
confidence in the label (= 1). The left hand becomes more active
and independent of the right hand in bb.9-16, and so the change in
label to “contrapuntal” seems appropriate also. The simpler left-
hand material returns in b.17, as does the “melody with
accompaniment” label.

3. RESULTS AND DISCUSSION
Figure 4 shows recall and precision results for the Stravinsqi
algorithm on the 2014 C@merata task. The measure metrics
reward an algorithm’s output if it is in the same bar/measure as a
ground-truth item, whereas the beat metrics require an algorithm’s
output to be in the same bar and on the same beat as a ground-
truth item. The mean category in Figure 4 shows the overall
results, with Stravinsqi having recall .91 and precision .46 at the
measure level, and recall .87 and precision .44 at the beat level.5

4 In most cases, the skyline is the set of points defined by the

highest-sounding note in each minimal segment of an excerpt.
5 Stravinsqi is labelled DMUN03 in the overview paper for the

task [16]. The other submitted runs DMUN01 and DMUN02 are
not remarkable: there were incorrect bar numbers in four pieces

Stravinsqi’s strong performance on the first eight of twelve
categories (pitch, duration,…, melodic interval) is encouraging, as
is the small decrease in recall (.91 to .87) and precision (.46 to
.44) with the change from measure- to beat-level granularity. The
remainder of this section discusses the weaker aspects of the
results, beginning with the drop in precision for compound
queries. Poor precision here is due to the criteria used to select
and combine time intervals for the different elements that
comprise a compound query. As an example, suppose the
compound query is “quaver followed by semiquaver”, that T1 is a
set of time intervals for “quaver” and T2 is a set of time intervals
for “semiquaver”. For subsequent processing, ideally the
algorithm will select pairs (τ1, τ2) ∈ T1 × T2 such that τ1 and τ2 are
adjacent time intervals. Presently, Stravinsqi selects these pairs, as
well as (τ2, τ1) ∈ T2 × T1 such that τ2 and τ1 are adjacent time
intervals. So the criteria for time interval selection were too
lenient, but this is something that can be fixed in future work.

In general, the C@merata task description was very clear, and the
training/test data covered sensible question categories in a
musically astute manner [16]. The following issues are small in
comparison to the overall solid work, but they are raised because
they may have had an effect on algorithm performance, and could
be usefully addressed for future iterations of the task.
The triad and texture categories are somewhat underrepresented in
the training and test data: neither the task description nor training
data contains examples of texture queries [16]. The task
description contains two examples of functional-harmonic
queries, but there are none in the training data. Furthermore, there

(see, for instance, the cross and correction in Figure 1), and this
caused issues because the conversion function xml2hum
overlooked incorrect bar numbers and began bar numbering
from 1 for the first complete bar. DMUN02 adjusted for these
errors compared with DMUN01, but still there was a further
piece for which xml2hum would not work. The piece was re-
encoded, and DMUN03 represents the submission that ran
across all twenty pieces, adjusting for erroneous bar numbering
also. Due to concerns about the bar numbering, the test data was
opened in order to check for any knock-on effects. No changes
were made to the Stravinsqi algorithm post-checking.

Figure 3. Bars 1-18 of Minuet in G major BWV ANH 114
by Christian Petzold (1677-1733), annotated below each
staff with texture labels and confidence ratings in [0, 1].

are only five texture questions and five functional-harmonic
questions in 200 test data. It is possible to make some inferences
about Stravinsqi’s performance, however. For triad labelling,
Stravinsqi suffered from the under/over-labelling issue (cf.
subsection 2.3). In particular, it missed two first-inversion triads
because the same triad in root position preceded them. The two
events—root-position followed by first-inversion triad—were
described by only one root-position label, and so the occurrence
of the first-inversion triad was missed. Diagnosing errors in the
texture queries is more difficult. The texture labels in Figure 3
seem reasonable, but these scored zero on all metrics for Question
10, “melody with accompaniment”. Similarly poor results were
returned for Question 130, “monophony”, for Piece 13, the
Prelude of Suite no.1 for Cello BWV1007 by J.S. Bach. The piece
consists of 41 bars of monophony followed by a final chord in bar
42 (although this is often spread in performance). Stravinsqi
returned a monophonic label for the entire piece. Depending on
the value of the monophonic threshold, Stravinsqi will tolerate the
occasional non-monophonic event in an otherwise monophonic
texture. This monophonic label scored zero on all metrics. It is
difficult to identify why this happened without knowing the
details of the ground-truth texture annotation.
There were some inconsistencies between the task
description/training collection, and test collection. On pp.5-6 of
the task description, two examples suggest that a query containing
an interval (e.g., “fourth”) ought to be treated by default as a
harmonic interval (simultaneously sounding notes), and only as a
melodic interval (consecutive notes) if the word “melodic” is
present. The score for Piece 20, “All praise to Thee my God” by
Thomas Tallis (1505-1585) is entirely monophonic; it cannot
contain simultaneously sounding notes and, by extension, cannot
contain harmonic intervals. The query for one question about the
Tallis (Question 200, “fourth”), a query about a harmonic interval
by default, should result in an empty answer. Stravinsqi’s output
was empty for this question, but it received zero on all metrics.

On p.8 of the task description there was an example question
about melodic intervals, reproduced in Figure 5 with relevant
notes highlighted. It is evident from Figure 5 that melodic
intervals can occur between consecutive chord notes on the same
staff (see the first answer in b.19; B♭4, E5). Question 109, for
Piece 11, the Largo cantabile from Concerto in G major op.7 no.2
RV299 by Vivaldi, requires that all instances of a “melodic rising
fifth” be returned. Two of the nine answers are shown in Figure 6.
As with Figure 5 there is an answer between two melody notes
(b.1) and an answer between consecutive chord notes (bb.3-4). Of
the remaining seven answers (not shown in the figure), one is of
the first type (between melody notes) and six are of the second
type (between consecutive chord notes). The Stravinsqi algorithm
scored 1 on recall metrics for this question, but only 2/9 on
precision, from which one infers the human, ground-truth
annotation did not include melodic intervals between consecutive
chord notes on the same staff. This contradicts the examples given
in the task description.

For harmonic interval questions, it was surprising to see recall and
precision of Stravinsqi at less than one. Regards recall, there were
two rather wide intervals requested for which Stravinsqi was not
prepared: “nineteenth” (Question 40), “major seventeenth”
(Question 99). Question 80, “harmonic fifth”, may not have been
interpreted correctly during ground-truth annotation: the divisions
value of 1 specified in the question suggests that crotchet-level
granularity is sufficient for representing all fifths occurring in
Piece 8, Sonata in F minor K466 by D. Scarlatti. Looking at the

end of b.19, for instance, there is a fifth between quavers in the
bass clef F4 and the treble clef C5, suggesting a divisions value of
at least 2 is necessary for representing all fifths in the piece.
The only conceivable reason for less-than-perfect precision points
to another potential issue with the ground-truth annotations.
Question 18, for Piece 2 shown in Figure 1, requires that all
instances of a “harmonic second” be returned. Arrows in Figure 1

Figure 5. Bars 17-20 of Sonata in D minor K1 (L366) by
Domenico Scarlatti (1685-1757), two augmented mel-

odic fourths highlighted, and C@merata syntax below.

Figure 4. Results of the Stravinsqi-Jun2014 algorithm
on the MediaEval 2014 C@merata task. Overall results
are indicated by the mean label, and followed by results

for twelve question categories.

Figure 6. Bars 1-5 of Sonata in E minor RV299 by
Antonio Vivaldi (1678-1741), with two melodic perfect

fifths highlighted.

indicate Stravinsqi’s output, which scored 1/5 for precision. One
assumes credit was assigned for the second between cello II (G3)
and viola (A3) in b.6. The other four intervals identified in
Figure 1 are instances of a note beginning in one voice and still
sounding when another note begins and forms a harmonic second.
Generally, it seems that the human, ground-truth annotation did
not allow for harmonic intervals involving notes that sound
together, but do not necessarily begin together. This is the main
reason for Stravinsqi’s drop in precision for harmonic interval
questions, but is not due to an algorithmic fault.

4. CONCLUSION
While musicologists may not find all aspects of the C@merata
task to be innovative and exciting (e.g., algorithms for finding
melodic intervals and sequences of melodic intervals have existed
for some time [1, 19]), the natural-language aspect of the task
opens up new, interesting potential applications. That is, there are
relatively few students/researchers willing to learn how to express
a music query such as “perfect fifth” in the numeric format
required by a pre-existing function in some programming
environment, and fewer still who would be prepared to write a
function that does not yet exist for some musicological query.
There are many students/researchers, however, who would find it
convenient to explore pieces of their choice with musicological
string queries. Thus, algorithms that perform strongly on the
C@merata task can have a significant impact in music education,
and as a springboard for musicological research.

The Stravinsqi algorithm described above is one such strong
performer, and has effectively solved seven of the twelve
C@merata task categories shown in Figure 4 (pitch, duration,
pitch and duration, articulation, voice specific, lyrics, and melodic
interval). As for the remaining five categories, precision for one
category (compound queries) can be improved by fixing a
selection-criteria bug. The less-than-perfect performance on
harmonic intervals can be addressed by resolving inconsistencies
in the task description and test data. The labelling of functional
harmonies is another area where Stravinsqi can be improved, and
this will require more training and test data. More data are also
required for the cadence and texture query categories. In future
iterations of the task, it may be helpful to have at least two experts
provide annotations for these higher-level music-theoretic
concepts, to check that there are consistent answers towards which
algorithm developers can aim. The addition of new, higher-level
music-theoretic query categories (e.g., [3]) would be welcome in
future iterations of C@merata as well, and will help to keep the
task at the forefront of research in music computing.

5. REFERENCES
[1] Aarden, B. J. 2003. Dynamic Melodic Expectancy. Doctoral

Thesis. School of Music, Ohio State University.

[2] Barlow, H., and Morgenstern S. 1948. A Dictionary of
Musical Themes. Crown Publishers, New York, NY.

[3] Caplin, W. E. 2013. Analyzing Classical Form: An Approach
for the Classroom. Oxford University Press, New York, NY.

[4] Collins, T. 2011. Improved Methods for Pattern Discovery in
Music, with Applications in Automated Stylistic Composition.

Doctoral Thesis. Faculty of Mathematics, Computing and
Technology, The Open University.

[5] Cuthbert, M. S., and Ariza C. 2010. music21: a toolkit for
computer-aided musicology and symbolic music data. In
Proceedings of the International Symposium on Music
Information Retrieval (Utrecht, The Nethlerands, August 09 -
13, 2010). 637-642.

[6] Eerola, T., and North, A. C. 2000. Expectancy-based model
of melodic complexity. In Proceedings of the International
Conference on Music Perception and Cognition (Keele, UK,
August 05 - 10, 2000). 7 pages.

[7] M. Grachten, and Krebs, F. 2014. An assessment of learned
score features for modeling expressive dynamics in music.
IEEE T. Multimedia. 16, 5, 1-8.

[8] Huron, D. 2002. Music information processing using the
Humdrum toolkit: concepts, examples, and lessons. Comput.
Music J. 26, 2, 11-26.

[9] Kornstädt, A. 1998. Themefinder: a web-based melodic
search tool. In Computing in Musicology, vol.11, W. B.
Hewlett and E. Selfridge-Field, Eds. Center for Computer
Assisted Research in the Humanities, Stanford, CA, 231-236.

[10] Krumhansl, C. L. 1990. Cognitive Foundations of Musical
Pitch. Oxford University Press, New York, NY.

[11] Meredith, D., Lemström, K., and Wiggins, G. A. 2002.
Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music.
J. New Music Res. 31, 4, 321-345.

[12] Pardo, B., and Birmingham, W. P. 2002. Algorithms for
chordal analysis. Comput. Music J. 26, 2, 27-49.

[13] Rockstro, W. S., Dyson, G., Drabkin, W., Powers, H. S., and
Rushton, J. 2014. Cadence. In Oxford Music Online. Re-
trieved January 6, 2014 from www.oxfordmusiconline.com.

[14] Sapp, C. S. 2005. Visual hierarchical key analysis. ACM
Computers in Entertainment. 3, 4, 1-19.

[15] Sapp, C. S. 2013. Humdum Extras. Retrieved March 3, 2014
from http://wiki.ccarh.org/wiki/Humdrum_Extras.

[16] Sutcliffe, R., Crawford, T., Fox, C., Root, D. L., and Hovy,
E. 2014. Shared evaluation of natural language queries
against classical music scores: a full description of the
C@merata 2014 task. Proceedings of the C@merata Task at
MediaEval 2014.

[17] Tymoczko, D. 2013. Review of Michael Cuthbert, music21:
a toolkit for computer-aided musicology
(http://web.mit.edu/music21/). Music Theory Online. 19, 3,
18 numbered paragraphs. Retrieved March 9, 2014 from
http://mtosmt.org/issues/mto.13.19.3/mto.13.19.3.tymoczko.
php.

[18] Tymoczko, D. 2014. Contribution to Harmonic Analysis
discussion on the music21 list. May 3, 2014.

[19] von Hippel, P., and Huron, D. 2000. Why do skips precede
reversals? The effect of tessitura on melodic structure. Music
Percept. 18, 1, 59-85.

