
Stravinsqi/De Montfort University 
at the MediaEval 2014 C@merata Task 

 Tom Collins 
Faculty of Technology 
De Montfort University 

Leicester, UK 
+44 116 207 6192 

tom.collins@dmu.ac.uk 

 
 
 

ABSTRACT 
A summary is provided of the Stravinsqi-Jun2014 algorithm and 
its performance on the MediaEval 2014 C@merata Task. 
Stravinsqi stands for STaff Representation Analysed VIa Natural 
language String Query Input. The algorithm parses a symbolic 
representation of a piece of music as well as a query string 
consisting of a natural language expression, and identifies where 
event(s) specified by the query occur in the music. The output for 
any given query is a list of time windows corresponding to the 
locations of relevant events. To evaluate the algorithm, its output 
time windows are compared with those specified by music experts 
for the same query-piece combinations. In an evaluation consist-
ing of twenty pieces and 200 questions, Stravinsqi-Jun2014 had 
recall .91 and precision .46 at the measure level, and recall .87 and 
precision .44 at the beat level. Question categories and examples 
are analysed where the Stravinsqi algorithm was less successful. 
Important potential applications of this work in web-based music 
notation software and musicological research are also discussed.   

1. INTRODUCTION 
There is a long-standing interest in querying music represented as 
(or derived from) staff notation. Collections of themes/incipits [2] 
provide an example of such an interest, and these predate even the 
introduction of computing into musicological research. With the 
development of digital formats such as kern [8] came algorithmic 
theme-finders [9], and research based on algorithms that identified 
scale degrees and melodic intervals automatically [1, 20]. 
Currently, some of this functionality lives on in a Python package 
for computational musicology called music21 [5]. It is fair to say, 
however, that technology does not yet exist capable of: 

1. Accepting a music-analytic query in the form of a natural-
language string, such as “perfect fifth followed by a D4”; 

2. Reliably retrieving instances of higher-level music-
theoretic concepts from staff notation, such as functional 
harmonies (e.g., “Ib”) or cadences (e.g., “interrupted 
cadence”). 

The C@merata task [16] challenges researchers to address both of 
these issues. Given a natural language query and a piece of music 
in digital staff notation representation, the C@merata task 
evaluates an algorithm’s ability to identify where one or more 
events specified by the query occur in the music. Time windows 
output by an algorithm are compared with time windows defined 
by a music theory expert. In the evaluation, algorithms that do not 
miss too many correct time windows will score well on recall, and 
those that do not return too many false-positive time windows will 
score well on precision. 

Across the English-speaking world, there are many students 
already benefiting from interactions with web-based music 
notation software. Noteflight, for instance, enables users to create 
and share music notation online, with various educational features 
for high school and college settings.1 One application of an 
algorithm that performs well on the C@merata task would be 
within such an interface, so that students could query and hear/see 
results for the pieces with which they are working, in order to 
develop their understanding of various music-theoretic terms. 
Other applications include continued and enhanced support of 
musicological research [1, 20], and informing solutions to various 
tasks in music informatics research, such as expressive rendering 
of staff notation [7] or automatic generation of music [4], both of 
which may benefit from knowledge of events such as cadences 
and/or changes in texture. 

The remainder of this paper is devoted to describing an algorithm 
called Stravinsqi that was submitted to the C@merata task. 
Several annotated music examples demonstrate in more detail 
Stravinsqi’s ability to extract instances of certain query types from 
staff notation (harmonic intervals, functional harmonies, 
cadences, and textures). The results of Stravinsqi on the 
C@merata task are then presented and discussed. 

2. APPROACH 
2.1 Overview 
The Stravinsqi-Jun2014 algorithm that was entered in the 
C@merata task is embedded in a Common Lisp package called 
MCStylistic-Jun2014 (hereafter, MCStylistic), which has been 
under development since 2008 [4].2 MCStylistic includes 
implementations of several algorithms from the fields of music 
information retrieval and music psychology, such as the chord-
labelling algorithm HarmAn [12], the Krumhansl-Schmuckler 
key-finding algorithm [10], keyscapes [14], and the Structure 
Induction Algorithm [11]. 

From a natural language perspective, there are two types of 
queries: compound queries such as “a Bb followed a bar later by a 
C followed by a tonic triad”, and ordinary queries such as “perfect 
cadence”. Stravinsqi checks the query string for compound 
queries and splits it into N query elements if necessary, e.g., “a 
Bb” and “a bar later by a C” and “tonic triad”. 

The piece is converted from its MusicXML format to kern format 
using the xml2hum script [15].3 The kern file is parsed by import 
functions in MCStylistic to give the following representations, 
which are referred to as point sets: 
                                                                    
1 http://www.noteflight.com 
2 http://www.tomcollinsresearch.net 
3 http://extras.humdrum.org/bin/osxintel64/ 

  
 
Copyright is held by the author/owner(s). 



• Instrument/staff and clef names at the beginning of each 
staff; 

• Bar numbers where time signatures are specified, together 
with the number of beats per bar, the type of beat, and the 
corresponding ontime. Ontime is the incrementing time in 
staff notation measured in crotchet beats, with 0 for bar 1 
beat 1. A note beginning at measure 3 beat 1 in a piece 
with four crotchets per bar has ontime 8, for example; 

• A point-set representation of the piece, where each point 
represents a note. The five-dimensional point consists of 
the ontime of the note, its MIDI note number, its 
morphetic pitch number [11], its duration in crotchet beats, 
and its numeric staff number (with zero for the top staff). 
Morphetic pitch number is a numeric encoding of staff 
height, with 60 for C♭4, C♮4, C♯4, 61 for D♭4, D♮4, 
D♯4, etc. There is a bijection between pitch and (MIDI 
note, morphetic pitch)-pairs [4], meaning if the MIDI note 
and morphetic pitch numbers of a note are known, then so 
are its correct pitch spelling and octave number. And vice 
versa; 

• A point-set representation of the piece with three extra 
dimensions, one each for articulation, dynamics, and lyrics 
information. If, for example, a note is marked marcato, 
then the dynamics entry of the point will contain “>”; 

• A point-set representation of the piece, where each point 
represents a notated rest. 

Each query element is passed to several sub-functions (e.g., 
harmonic-interval-of-a, duration&pitch-time-
intervals, rest-duration-time-intervals, etc.), 
along with the appropriate point set(s). For example, the function 
rest-duration-time-intervals takes a query element, 
the point set of notated rests, and the point set of instrument/staff 
and clef names as its arguments, because these three information 
sources are sufficient for locating rests of specific duration 
(perhaps also constrained to specified voices). In general, if the 
query is relevant to the Stravinsqi sub-function, the sub-function 
should output time intervals where events corresponding to that 
query occur. As an example, if the query element is 
“semiquaver F♯”, then the function duration&pitch-time-
intervals should output all time intervals where a semiquaver 
F♯ occurs, whereas for this same query the output of the function 
harmonic-interval-of-a should be empty. 

Since there is not space here to describe all of the sub-functions 
called by Stravinsqi, the next subsection will address a 
straightforward sub-function harmonic-interval-of-a, 
and then more involved sub-functions for identifying functional 
harmonies, cadences, and textures. 

If a query string is ordinary (contains one element only), then the 
time windows in the first nonempty sub-function’s output are 
passed to a final function that converts the time windows into the 
XML format required by the task. Calls to the sub-functions are 
ordered by most to least specific (e.g., duration&pitch-
time-intervals is more specific than pitch-time-
intervals), so that if both an earlier output and a later output 
are nonempty, the output for the more specific rather than the less 
specific sub-function is returned. 

If a query string is compound, then sub-function fm will have a set 
of output time windows Tm,n for query element n. Stravinsqi will 

allow any plausible sequence of time windows τ1 ∈ Tm(1),1, τ2 ∈ 
Tm(2),2,…, τN ∈ Tm(N),N to be passed on for further processing. 
Plausibility here means that two time windows [a, b] and [c, d] are 
adjacent (b = c) if the original query contained “followed by” or 
“then”, or that two time windows are the appropriate distance 
apart if the original query contained, say, “followed two bars later 
by”. A plausible sequence of time windows τ1 = [a1, b1], τ2,…, 
τN = [aN, bN] is merged into one time window [a1, bN] and passed 
to the final function for conversion into the XML format required 
by the task. 

2.2 Harmonic Intervals 
To identify instances of a specified harmonic interval, the point-
set representation of a piece is converted into minimal segments 
[12], delimited by times at which notes begin and end. The first 
few minimal segments for the piece shown in Figure 1 are 
S0 = {(−1, G2, 1, 3), (−1, G3, 1, 2), (−1, D4, 1, 1), (−1, D4, 1, 0)}, 
S1 = {(0, G2, 2, 3), (0, B3, 1, 2), (0, D4, 1, 1), (0, G4, 1, 0)}, 
S2 = {(0, G2, 2, 3), (1, B3, 1/2, 2), (1, D4, 1, 1), (1, G4, 1/2, 0)}, 
S3 = {(0, G2, 2, 3), (1, D4, 1, 1), (3/2, C4, 1/2, 2), (3/2, A4, 1/2, 0)}. 

Importantly, a note can belong to more than one minimal segment. 
For example, the second D4 in Violin II b.1 belongs to both S2 
and S3. The second step in identifying the relevant harmonic 
intervals is to convert the written interval into one or more target 
pairs of MIDI note and morphetic pitch intervals. For example, a 
“major second” would correspond to 2 MIDI note intervals (2 
semitones) and 1 morphetic pitch interval (1 step on the staff), so 
the target pair would be (2, 1). A “second” would require two 
target pairs: (2, 1) for “major second”, and (1, 1) for “minor 
second”. For each minimal segment S, the maximal translatable 
pattern (MTP) [11] of the target pair(s) is calculated. The MTP is 

Figure 1. Prelude to Te Deum H146 by Marc-Antoine 
Charpentier (1643-1704), annotated with a bar number 
error (tick and cross), intervals of a harmonic second 
(arrows), functional harmonies below each staff, and 

three perfect cadences (black boxes). 
 



the set of all points that translate by the target pair on to some 
other point in the minimal segment, which corresponds to the set 
of all notes that form a harmonic interval corresponding to the 
target pair. If a minimal segment S has a nonempty MTP for the 
target pair, then the time window where S sounds contains the 
specified interval. This approach to calculating harmonic intervals 
is thorough, in the sense that it considers notes within and 
between voices (as required by the task description), and notes 
that sound together at a specified interval but do not necessarily 
begin together. Almost all the harmonic seconds in Figure 1 
(indicated by arrows) are of this variety. 

2.3 Harmonic Analysis and Cadences 
Example output of the Stravinsqi algorithm’s sub-function for 
functional harmonic analysis is shown below each staff in 
Figure 1. The algorithm is over-labelling in bb.3-4, but otherwise 
the output is quite promising. Recent remarks in musicological 
circles suggest that an algorithm capable of sensible harmonic 
analyses does not yet exist and may be some way off [17, 18]. 
This could be lack of dialogue between musicological and music 
information retrieval communities, however. The HarmAn 
algorithm [12] is over a decade old, and while, admittedly, it 
provides chord labels (e.g., G maj, D7) rather than functional 
harmonic labels (e.g., I, V7), HarmAn is a useful starting point. 
Included in MCStylistic, the Stravinsqi algorithm’s sub-function 
is called HarmAn->Roman, an extension of the HarmAn 
algorithm, and it does provide functional harmonic labels and 
inversions, as shown in Figure 1. 

The HarmAn algorithm [12] begins by converting a point-set 
representation of a piece into minimal segments (cf.  
subsection 2.2). A segment is defined as a sequence of adjacent 
minimal segments, and so there are n(n − 1)/2 possible segments 
for n minimal segments. Each segment is compared with 
templates representing different chords (e.g., C maj, D♭ maj, 
D maj,…, C7, D♭7, D7, etc.), and scored according to how similar 
it is to each template. The template with highest score is assigned 
as a provisional chord label. The final part of the HarmAn 
algorithm consists of a linear-time method for traversing these 
segment scores in temporal order and outputting a set of chord 
labels, without requiring an exhaustive search over all possible 
segment combinations [12]. My extension to HarmAn, called 
HarmAn->Roman, involves estimating the overall key of the 
input piece/excerpt, using this to convert chord labels to 
functional harmonic labels, and adding information about 
inversions. 

An issue faced when designing chord labelling algorithms is the 
balance to be struck between under- and over-labelling 
progressions. An example of the HarmAn->Roman solution to 
this issue is shown in Figure 2. An under-labelled solution 
(prefaced by UL) places labels at each beat, whereas an over-
labelled solution (preface OL) is busier for the last five beats of 
the passage in particular. The HarmAn->Roman output (prefaced 
by AO for algorithm output) is more similar to the under-labelled 
solution than it is to the over-labelled solution. A harmony 
instructor might prefer the under-labelled solution to the over-
labelled solution in this instance, as the end of the latter seems 
overly fussy. In this sense, HarmAn->Roman does well. If the 
passage is queried for an occurrence of Ib, however, HarmAn-
>Roman does less well, because it has not split b.3 beat 4 into 
two labels (I and Ib), and so the occurrence of Ib is not found. 

The Stravinsqi algorithm’s sub-function for cadence identification 
is based in large part on its use of HarmAn->Roman for 

functional harmonic analysis. Three perfect cadences identified by 
the cadential sub-function, cadence-time-intervals, are 
shown in Figure 1, indicated by black boxes with grey shading. 
The function cadence-time-intervals forms bigrams 
from a harmonic labelling (e.g., the labels I, V7d, I, V, I, IV 
become (I, V7d), (V7d, I), (I, V), (V, I), (I, IV)). If a perfect 
cadence is to be sought, then indices of bigrams relevant to perfect 
cadences are returned. (E.g., occurrences of (V, I) or (V7, I) or 
(V, i), etc. would be relevant.) If (A, B) is a relevant bigram and B 
has ontime t, then t must correspond to either beats one or three of 
the bar in a piece in common time, in order for (A, B) to be 
admitted as a perfect cadence. Since, for a perfect cadence, it is 
only “occasionally stipulated that the final chord must have the 
tonic in the highest part” [13], no further requirements are 
stipulated. Looking at the three perfect cadences identified in 
Figure 1, the last is of the variety with the tonic in the highest part, 
and the first two have the mediant in the highest part. 

2.4 Textural Analysis 
The Stravinsqi algorithm’s sub-function for textural analysis 
outputs quadruplets: the first element in a quadruplet is the 
beginning of a time window where a texture label applies; the 
second is the end of that time window; the third is a texture label 
(monophonic, homophonic, melody with accompaniment, 
polyphonic, contrapuntal) or empty, and the fourth is a value in 
[0, 1] expressing the confidence with which the texture label was 
assigned. Thresholds for these labels can be altered so that, for 
instance, a piece consisting entirely of monophony apart from the 
final bar might be considered entirely monophonic if the 
monophony threshold is lenient, or monophonic up until the last 
bar and then homophonic if the monophony threshold is more 
strict. 
The texture sub-function operates by identifying points 
(representing notes) that belong to windows [0, s], [h, h + s], 
[2h, 2h + s], where the window size s = 4 crotchet beats and the 
hop size h = 1 crotchet beat, and sending these point collections 
for independent textural analysis. When a label has been assigned 
to each collection, adjacent windows that share labels are elided.  

Independent textural analysis of a windowed excerpt begins with 
testing whether the label “monophonic” applies, by calculating 
whether |X ∩ Y|/|Y| is greater than or equal to the monophonic 
threshold, where X is the set of (ontime, MIDI note)-pairs in the 

Figure 2. Bars 3-4 of the chorale setting “Straf mich 
nicht in deinem Zorn” BWV115.6 (R38) by Johann 

Sebastian Bach (1685-1750), annotated with algorithm-
output (AO) functional harmonies, and under-labelled 

(UL) and over-labelled (OL) expert annotations. 
 



excerpt’s skyline and Y is the set of (ontime, MIDI note)-pairs in 
the excerpt.4 If the skyline set is equal to (or very nearly equal to) 
the whole set of notes in an excerpt, then likely the windowed 
excerpt is monophonic. If the excerpt is not monophonic, textural 
analysis continues with testing whether the label “homophonic” 
applies, by calculating whether |X ∩ Y|/max{|X|, |Y|} is greater 
than or equal to the homophonic threshold, where X is the set of 
ontimes in the excerpt’s skyline and Y is the set of ontimes for 
notes that are in the excerpt but not in the skyline (the 
accompaniment). If the skyline’s ontimes and the 
accompaniment’s ontimes are very similar, then likely the excerpt 
is homophonic. If the excerpt is not homophonic, textural analysis 
continues with testing whether the label “melody with 
accompaniment” applies, by calculating two quantities: first, r1 = 
|X ∩ Y|/max{|X|, |Y|}, where X is the skyline calculation applied 
twice to the excerpt, and Y is what remains; second, r2 = ρt /(3ρb), 
where ρt is the rhythmic density (mean number of notes per 
crotchet beat, [6]) in the top staff and ρb is the rhythmic density of 
the staff immediately below the top staff. If either r1 or r2 are 
greater than or equal to the melody-with-accompaniment 
threshold, then this label applies. The quantity r1 is perhaps not 
easily interpreted, but it is the same idea for testing homophony, 
applied to just the accompaniment. The quantity r2 tests whether 
the skyline is three or more times as active (in terms of notes per 
crotchet beat) than the accompaniment. If so then the excerpt’s 
texture may be considered “melody with accompaniment”. 
Finally, independent textural analysis tests whether the label 
“polyphonic” (vocal music) or “contrapuntal” (instrumental 
music) applies to an excerpt, by extracting the notes from each 
staff and testing whether these note collections would each be 
considered monophonic. If so then the excerpt is labeled 
polyphonic or contrapuntal. If not, then the excerpt does not have 
a texture label assigned. 

Example output of Stravinsqi’s textural analysis sub-function is 
shown in Figure 3. The piece begins with a sixteen-bar section 
that bisects into eight bars ending on an imperfect cadence, 
followed by eight similar bars ending on a perfect cadence. The 
excerpt begins with right-hand material that is more active in 
terms of notes per crotchet beat than the left hand. The label 
“melody with accompaniment” shown in Figure 3 for bb.1-8 
seems appropriate, therefore, as does the maximal level of 
confidence in the label (= 1). The left hand becomes more active 
and independent of the right hand in bb.9-16, and so the change in 
label to “contrapuntal” seems appropriate also. The simpler left-
hand material returns in b.17, as does the “melody with 
accompaniment” label. 

3. RESULTS AND DISCUSSION 
Figure 4 shows recall and precision results for the Stravinsqi 
algorithm on the 2014 C@merata task. The measure metrics 
reward an algorithm’s output if it is in the same bar/measure as a 
ground-truth item, whereas the beat metrics require an algorithm’s 
output to be in the same bar and on the same beat as a ground-
truth item. The mean category in Figure 4 shows the overall 
results, with Stravinsqi having recall .91 and precision .46 at the 
measure level, and recall .87 and precision .44 at the beat level.5 

                                                                    
4 In most cases, the skyline is the set of points defined by the 

highest-sounding note in each minimal segment of an excerpt. 
5 Stravinsqi is labelled DMUN03 in the overview paper for the 

task [16]. The other submitted runs DMUN01 and DMUN02 are 
not remarkable: there were incorrect bar numbers in four pieces 

Stravinsqi’s strong performance on the first eight of twelve 
categories (pitch, duration,…, melodic interval) is encouraging, as 
is the small decrease in recall (.91 to .87) and precision (.46 to 
.44) with the change from measure- to beat-level granularity. The 
remainder of this section discusses the weaker aspects of the 
results, beginning with the drop in precision for compound 
queries. Poor precision here is due to the criteria used to select 
and combine time intervals for the different elements that 
comprise a compound query. As an example, suppose the 
compound query is “quaver followed by semiquaver”, that T1 is a 
set of time intervals for “quaver” and T2 is a set of time intervals 
for “semiquaver”. For subsequent processing, ideally the 
algorithm will select pairs (τ1, τ2) ∈ T1 × T2 such that τ1 and τ2 are 
adjacent time intervals. Presently, Stravinsqi selects these pairs, as 
well as (τ2, τ1) ∈ T2 × T1 such that τ2 and τ1 are adjacent time 
intervals. So the criteria for time interval selection were too 
lenient, but this is something that can be fixed in future work. 

In general, the C@merata task description was very clear, and the 
training/test data covered sensible question categories in a 
musically astute manner [16]. The following issues are small in 
comparison to the overall solid work, but they are raised because 
they may have had an effect on algorithm performance, and could 
be usefully addressed for future iterations of the task. 
The triad and texture categories are somewhat underrepresented in 
the training and test data: neither the task description nor training 
data contains examples of texture queries [16]. The task 
description contains two examples of functional-harmonic 
queries, but there are none in the training data. Furthermore, there 
                                                                                                                 

(see, for instance, the cross and correction in Figure 1), and this 
caused issues because the conversion function xml2hum 
overlooked incorrect bar numbers and began bar numbering 
from 1 for the first complete bar. DMUN02 adjusted for these 
errors compared with DMUN01, but still there was a further 
piece for which xml2hum would not work. The piece was re-
encoded, and DMUN03 represents the submission that ran 
across all twenty pieces, adjusting for erroneous bar numbering 
also. Due to concerns about the bar numbering, the test data was 
opened in order to check for any knock-on effects. No changes 
were made to the Stravinsqi algorithm post-checking. 

Figure 3. Bars 1-18 of Minuet in G major BWV ANH 114 
by Christian Petzold (1677-1733), annotated below each 
staff with texture labels and confidence ratings in [0, 1]. 

 



are only five texture questions and five functional-harmonic 
questions in 200 test data. It is possible to make some inferences 
about Stravinsqi’s performance, however. For triad labelling, 
Stravinsqi suffered from the under/over-labelling issue (cf. 
subsection 2.3). In particular, it missed two first-inversion triads 
because the same triad in root position preceded them. The two 
events—root-position followed by first-inversion triad—were 
described by only one root-position label, and so the occurrence 
of the first-inversion triad was missed. Diagnosing errors in the 
texture queries is more difficult. The texture labels in Figure 3 
seem reasonable, but these scored zero on all metrics for Question 
10, “melody with accompaniment”. Similarly poor results were 
returned for Question 130, “monophony”, for Piece 13, the 
Prelude of Suite no.1 for Cello BWV1007 by J.S. Bach. The piece 
consists of 41 bars of monophony followed by a final chord in bar 
42 (although this is often spread in performance). Stravinsqi 
returned a monophonic label for the entire piece. Depending on 
the value of the monophonic threshold, Stravinsqi will tolerate the 
occasional non-monophonic event in an otherwise monophonic 
texture. This monophonic label scored zero on all metrics. It is 
difficult to identify why this happened without knowing the 
details of the ground-truth texture annotation. 
There were some inconsistencies between the task 
description/training collection, and test collection. On pp.5-6 of 
the task description, two examples suggest that a query containing 
an interval (e.g., “fourth”) ought to be treated by default as a 
harmonic interval (simultaneously sounding notes), and only as a 
melodic interval (consecutive notes) if the word “melodic” is 
present. The score for Piece 20, “All praise to Thee my God” by 
Thomas Tallis (1505-1585) is entirely monophonic; it cannot 
contain simultaneously sounding notes and, by extension, cannot 
contain harmonic intervals. The query for one question about the 
Tallis (Question 200, “fourth”), a query about a harmonic interval 
by default, should result in an empty answer. Stravinsqi’s output 
was empty for this question, but it received zero on all metrics. 

On p.8 of the task description there was an example question 
about melodic intervals, reproduced in Figure 5 with relevant 
notes highlighted. It is evident from Figure 5 that melodic 
intervals can occur between consecutive chord notes on the same 
staff (see the first answer in b.19; B♭4, E5). Question 109, for 
Piece 11, the Largo cantabile from Concerto in G major op.7 no.2 
RV299 by Vivaldi, requires that all instances of a “melodic rising 
fifth” be returned. Two of the nine answers are shown in Figure 6. 
As with Figure 5 there is an answer between two melody notes 
(b.1) and an answer between consecutive chord notes (bb.3-4). Of 
the remaining seven answers (not shown in the figure), one is of 
the first type (between melody notes) and six are of the second 
type (between consecutive chord notes). The Stravinsqi algorithm 
scored 1 on recall metrics for this question, but only 2/9 on 
precision, from which one infers the human, ground-truth 
annotation did not include melodic intervals between consecutive 
chord notes on the same staff. This contradicts the examples given 
in the task description. 

For harmonic interval questions, it was surprising to see recall and 
precision of Stravinsqi at less than one. Regards recall, there were 
two rather wide intervals requested for which Stravinsqi was not 
prepared: “nineteenth” (Question 40), “major seventeenth” 
(Question 99). Question 80, “harmonic fifth”, may not have been 
interpreted correctly during ground-truth annotation: the divisions 
value of 1 specified in the question suggests that crotchet-level 
granularity is sufficient for representing all fifths occurring in 
Piece 8, Sonata in F minor K466 by D. Scarlatti. Looking at the 

end of b.19, for instance, there is a fifth between quavers in the 
bass clef F4 and the treble clef C5, suggesting a divisions value of 
at least 2 is necessary for representing all fifths in the piece. 
The only conceivable reason for less-than-perfect precision points 
to another potential issue with the ground-truth annotations. 
Question 18, for Piece 2 shown in Figure 1, requires that all 
instances of a “harmonic second” be returned. Arrows in Figure 1 

Figure 5. Bars 17-20 of Sonata in D minor K1 (L366) by 
Domenico Scarlatti (1685-1757), two augmented mel-

odic fourths highlighted, and C@merata syntax below. 
 

Figure 4. Results of the Stravinsqi-Jun2014 algorithm 
on the MediaEval 2014 C@merata task. Overall results 
are indicated by the mean label, and followed by results 

for twelve question categories. 
 

Figure 6. Bars 1-5 of Sonata in E minor RV299 by 
Antonio Vivaldi (1678-1741), with two melodic perfect 

fifths highlighted. 
 



indicate Stravinsqi’s output, which scored 1/5 for precision. One 
assumes credit was assigned for the second between cello II (G3) 
and viola (A3) in b.6. The other four intervals identified in 
Figure 1 are instances of a note beginning in one voice and still 
sounding when another note begins and forms a harmonic second. 
Generally, it seems that the human, ground-truth annotation did 
not allow for harmonic intervals involving notes that sound 
together, but do not necessarily begin together. This is the main 
reason for Stravinsqi’s drop in precision for harmonic interval 
questions, but is not due to an algorithmic fault. 

4. CONCLUSION 
While musicologists may not find all aspects of the C@merata 
task to be innovative and exciting (e.g., algorithms for finding 
melodic intervals and sequences of melodic intervals have existed 
for some time [1, 19]), the natural-language aspect of the task 
opens up new, interesting potential applications. That is, there are 
relatively few students/researchers willing to learn how to express 
a music query such as “perfect fifth” in the numeric format 
required by a pre-existing function in some programming 
environment, and fewer still who would be prepared to write a 
function that does not yet exist for some musicological query. 
There are many students/researchers, however, who would find it 
convenient to explore pieces of their choice with musicological 
string queries. Thus, algorithms that perform strongly on the 
C@merata task can have a significant impact in music education, 
and as a springboard for musicological research. 

The Stravinsqi algorithm described above is one such strong 
performer, and has effectively solved seven of the twelve 
C@merata task categories shown in Figure 4 (pitch, duration, 
pitch and duration, articulation, voice specific, lyrics, and melodic 
interval). As for the remaining five categories, precision for one 
category (compound queries) can be improved by fixing a 
selection-criteria bug. The less-than-perfect performance on 
harmonic intervals can be addressed by resolving inconsistencies 
in the task description and test data. The labelling of functional 
harmonies is another area where Stravinsqi can be improved, and 
this will require more training and test data. More data are also 
required for the cadence and texture query categories. In future 
iterations of the task, it may be helpful to have at least two experts 
provide annotations for these higher-level music-theoretic 
concepts, to check that there are consistent answers towards which 
algorithm developers can aim. The addition of new, higher-level 
music-theoretic query categories (e.g., [3]) would be welcome in 
future iterations of C@merata as well, and will help to keep the 
task at the forefront of research in music computing. 
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