
The Pendular Graph: Visualising Hierarchical
Repetitive Structure in Point-set Representations

of the POP909 Music Dataset

Chenyu Gao1[0000−0002−8946−1668] and Tom Collins2,3[0000−0001−7880−5093]

1 University of York, York, UK
2 University of Miami, Coral Gables, USA

3 MAIA, Inc., Davis, USA
{chenyugao.cs,tomthecollins}@gmail.com

Abstract. Structure in music can mean many things: repetition, tonal-
ity, the existence of and focus on different “musical dimensions”, such as
rhythm, timbre, etc. Here, we are concerned with repetitive structures in
music, such as sections that repeat within a song (verses, choruses, etc.).
We are also concerned mainly with hierarchical repetition (e.g., within a
verse, there may be a phrase or riff that recurs multiple times). Existing
annotated music datasets tend to be either small in terms of items in the
corpus, but with detailed annotatations, or larger as a corpus, but with
linear annotations only. In this paper, we 1) develop a method for taking
a linear annotation as input, and converting it to a hierarchical annota-
tion as output, where such hierarchies exist in the input, and 2) introduce
a web-based interface4 where hierarchical annotations of 909 songs can
be explored and played back, in synchrony with a visual representation
of note content.

Keywords: First keyword · Second keyword · Another keyword.

1 Introduction

The word “structure” has multiple meanings in music theory, from repetition
to the existence of and focus on different “musical dimensions” (e.g., pitch or
rhythm). In this paper, we are mainly focusing on hierarchical repetitive struc-
tures in music. For example, there are sections (verses, choruses, etc.) that repeat
within a song, in which there may be a phrase or riff that recurs multiple times
within a verse. If a piece of music is annotated as “intro, verse, verse, chorus,
verse, chorus, chorus” (or, more succinctly, “ABBCBCC”), this is a linear an-
notation (not hierarchical), because it contains no indication of smaller-scale
repetition of phrases within a verse, and the existence of a larger section is only
implicit (e.g., the substring “BC” occurs twice).

Comprehending musical structure has been shown to help people remember
or understand music better [13], and could be especially useful for people lis-
tening to a piece for the first time. Visualised structure also provides a way to
4 https://pendular-graph.glitch.me/

https://pendular-graph.glitch.me/

2 C. Gao et al.

communicate intepretations of music, as different people may annotate the same
song with different structural labels [3]. A lot of music structure visualisation
tools have been developed [30,19,15,5,18,16,23], but many of these tools suffer
either from a lack of interactivity, or are now unusable due to software depen-
dency or maintenance issues. In this paper, we develop a Web-based hierarchical
repetitive pattern visualisation tool based on the PatternViewer [23]. In our in-
terface, the hierarchical structure of each song is visualised as a pendular graph,
and repetitive phrases can be played by clicking nodes on the graph. Figure 1
shows an outline of our interface.

Existing music structure visualisation tools are highly relied on annotated
data, while existing music datasets with structural annotations tend to be either
a) small in terms of items in the corpus, but with detailed annotatations [6,26],
or b) larger as a corpus, but with linear annotations only [11]. So, we define
hierarchical structural annotations from an existing set of 909 linear-annotated
popular Chinese songs.

The contributions of this paper are to 1) develop a method for taking a linear
annotation as input, and hierarchicalise it to provide a hierarchical annotation
as output (where such hierarchies exist in the input, such as with “BC” in the
example above), and 2) introduce a web-based interface where hierarchical anno-
tations of 909 songs can be explored and played back, in sync with the note-level
content.

1. Song Selection Panel

4. Pendular Diagram Visualisation

5. Piano-Roll Visualisation

3. Playback Controls
2. Selected Song Name

Fig. 1: A high-fidelity prototype of our interface.

The pendular graph: Visualising hierarchical repetitive structure in music 3

2 Literature Review

This review is split into three parts: first, we provide a brief survey of relevant
music representations and file formats; second, we consider previous work on
preparing and publishing music datasets with structural annotations; third, we
look to methods and tools developed for the visualisation of music-repetitive
structure.

2.1 Relevant music representations and file formats

Mainly, this paper will overlook audio representations of music. Automatic tran-
scription methods are improving [2,17] and offer the prospect of deriving note-
level details from arbitrary audio inputs, but in this paper we are concerned with
a dataset whose representation is symbolic (at the note level). Much work on
symbolic music processing in the music information retrieval literature begins
with melodic – or at least sequential – representations, such as ABC [27], view-
points [8], or pitch/interval strings [9]. While some of the examples we include
below from other researchers’ work constitutes melodic or monophonic (mean-
ing one note at a time) representations, generally, we are concerned with music
where multiple notes can begin/end at the same time (polyphonic).

Musical Instrument Digital Interface (MIDI) is means via which certain elec-
tronic instruments or devices can communicate musical information. MIDI files
contain the trace or record of people playing on such instruments, but they can
also be created by someone inputting notes with a mouse or keyboard, using soft-
ware such as a digital audio workstation. Note events belong to tracks that are
associated with certain instruments, with the MIDI note number describing the
pitch of a note, and “Note_on” and “Note_off” pairs indicating the start times
and durations of notes. As such, MIDI does support polyphonic representation
of music. Although other information, such as tempo and velocity (loudness),
are also contained in MIDI, MIDI provides slightly different information to that
contained in staff notation or sheet music (e.g., direction of note stems, voicing,
pitch spelling, etc., are absent from MIDI files but present in staff notation).

MusicXML and MEI are hierarchical markup languages for representing staff
notation, in much the same way that HTML represents text documents. They
can also represent polyphonic music. Another difference between MusicXML and
MIDI is that MusicXML describes musical events relative to one another whereas
MIDI events are encoded in absolute terms. E.g., to calculate the start time of a
note in a MusicXML file, it is necessary to know or calculate the start and end
times of all preceding notes, whereas in a MIDI file it is not.

Composition, Instrument, and Production objects are three JSON-based file
formats used to bridge audio and symbolic representations of music.5 As implied
by their names: a Composition object contains similar information to a digital
score encoding or MIDI file; an Instrument object contains information about

5 https://musicintelligence.co/api/maia-spec/

https://musicintelligence.co/api/maia-spec/

4 C. Gao et al.

sample-based or synthesis-based sound generators; and a Production object con-
tains information about audio effects that might be applied to instruments over
the time course of a piece. For the purposes of this paper, we can focus on an
example Composition object, given in Listing 1.

We will not go through the example in Listing 1 in full detail, but only men-
tion the most relevant components. Lines 2-8 can be considered metadata, while
lines 9-31 are the main musical data of the Composition object. The layer prop-
erty straddles the categories of metadata and data, containing staff information
as well as annotations of the piece of music. For instance, the hierGt property
is an abbreviation of “hierarchical ground truth”, and will be explained further
in Section 3, since it is a new contribution of this paper. Each note in the piece
is specified by an element of the notes array (lines 11-24), with properties that
encompass both MIDI and MusicXML formats, depending on the source from
which the Composition object is created. For example, if a Composition object
is created via MusicXML import, a property such as pitch will be defined un-
ambiguously; but if it is created via MIDI import, then pitch would have to be
estimated from the context. On the other hand, if a Composition object is created
via MIDI import, then there may be many tempo and/or control changes (such
as sustain pedal), which can be stored in tempi and controlChange properties,
respectively; but if it is created via MusicXML import, then the controlChange
property is not likely to be populated.

2.2 Music Datasets with Structural Annotations

A classical music dataset named JKU-PDD [6] has repetitive theme and sec-
tion (generally, “pattern”) annotations. Ground-truth patterns in the JKU-PDD
dataset are based on sectional repetitions marked in the score, as well as and mu-
sic analysts’ annotations [1,24,4]. A strength of the JKU-PDD is that it contains
hierarchical patterns (e.g., an annotated theme may occur within an anno-
tated section); a weakness is that only five pieces of music are labelled. Repeti-
tive pattern annotations of another six pieces of classical music are provided by
Tomašević et al. [26]. These six pieces are labelled by multiple annotators when
studying to what extent different annotation tools and the background of anno-
tators influence the annotation process. Similarly, the weakness of this dataset
is that it only contains a handful of pieces.

The POP909 dataset [28] contains piano arrangements of 909 popular Chi-
nese songs in MIDI format, with phrase-level repetitive structure labels [11]. So,
in contrast to the JKU-PDD and Tomašević et al.’s annotations, a strength of
POP909 is its size; but a weakness is that the annotations are not hierarchical
– the labels are attributed at the phrase level only.

In the repetitive phrase labels, melodic phrases are labelled with capital
letters, while non-melodic phrases are labelled with lower-case letters. A non-
melodic introduction phrase is labelled with “i”, a non-melodic ending phrase is
labelled with “o”, and other non-repetitive phrases are labelled with “X” and “x”.
The phrase length (the number of bars) is indicated by the number following
each phrase label. For example, the song “123 Pinocchio” by Hey Girl in the

The pendular graph: Visualising hierarchical repetitive structure in music 5

Listing 1 Simplified example of a Composition object for “123 Pinocchio”.

1 {
2 "id": "002",
3 "name": "123 Pinocchio",
4 "composers": [...],
5 "layer": [
6 ... ,
7 "hierGt": { ... }
8],
9 "keySignatures": [...],

10 "timeSignatures": [...],
11 "notes": [
12 {
13 "barOn": 1,
14 "beatOn": 1 .5,
15 "ontime": 0 .5,
16 "duration": 0 .33333,
17 "mnn": 75,
18 "mpn": 68,
19 "pitch": "D#5",
20 "staffNo": 1,
21 ...
22 },
23 ...
24],
25 "tempi": [...],
26 "miscImport": {
27 "midi": {
28 "controlChange": [...]
29 },
30 ...
31 }
32 }

6 C. Gao et al.

POP909 dataset is labelled “i4A4A4B9b4A4B9b4B9X5o2”, where “A4” means
phrase “A” consists of 4 bars. Each time “A4” appears in the sequence, there is
an exact or inexact repetition of the phrase “A” in the song.

In contrast to the JKU-PDD, with POP909, we do not know whether all or
just some of the notes occurring in the four bars labelled “A4” belong to (are
a repetition of) “A”. But the size of POP909 and the potential for turning the
annotations into a hierarchical repetitive structure (see Section 3) make it an
interesting dataset.

2.3 Music Structure Visualisation Methods

The Shape of Song [29] is an application of arc diagrams [30], in which the
repetition of a contiguous pitch sequence is connected to the previous occurrence
with an arc. Figure 2 shows an example of the arc diagram, where the largest arc
connects bars 1-2 with bars 5 and the first three pitches of bar 6. Two more D’s
in bars 3 and 7 could be considered included in the largest repetition, since the
patterns are still perceptually similar after adding these two notes. However, the
arc diagram limits repetitive patterns to be consecutive. If applied to polyphonic
data, it would be necessary to define a sequential ordering of notes before the
arc diagram could be calculated and constructed – and again, there could be
issues with perceptually similar material not being annotated because of slight
differences between occurrences of patterns. Similarly, the Infinite Jukebox [19]
also connects repetitive patterns with arcs, but a song is visualised as a circle.
The interactivity of the Shape of Song and the Infinite Jukebox is limited, and
the arc diagrams become dense and difficult to interpret when the length and
complexity of the music grows.

Fig. 2: “Mary Had a Little Lamb” visualised by using the Arc Diagrams [30].

Endrjukaite and Kosugi [15] visualises both repetitive patterns and changes
in volume by using coloured cylindrical diagrams. Each song is represented by
such a diagram, where repetitive patterns are drawn in the same colour, and the
diameter reflects the volume. Similar to [15], Chen and Su [5] and Hayashi et al.

The pendular graph: Visualising hierarchical repetitive structure in music 7

[18] also represent repetitive patterns in the same colours. Further, [5] introduces
a clustering method to visualise the role of these repetitive patterns in the context
of the whole piece of music, while [18] focuses on repetitions between different
MIDI tracks. These visualisations suffer from limited interactivity.

By contrast, Songle [16] is more interactive, visualising both the repetitive
structure of note and chord content of songs. Songle uses horizontal panels to
represent structure and content. For example, one panel contains an automatic
transcription of the note content, another an automatic transcription of the
chords, while a third panel uses differently coloured oblongs to indicate repeated
segments, with oblongs at the same vertical position and of the same colour being
perceptually similar. But repetitive patterns are not organised by hierarchical
structure, which makes it difficult for users to comprehend the overall structure
of songs. Furthermore, mistakes in the automatic transcription can obscure re-
lationships between song segments (e.g., a repeat chord sequence Em, G/D, C,
B, D mistranscribed on occasion as Em, C7, Cdim7, G/D will not be identified
as sufficiently similar to be highlighted visually).

PatternViewer [23] visualises the repetitive music structure in a pendular
graph, and notes currently playing are coloured according to the estimated
key. In a pendular graph, G, each vertex (or node) v in the set of vertices V
represents a pattern occurrence Pi,j , where Pi,j is a set of points belonging
to a point-set representation of the entire piece. An occurrence set is denoted
Pi = {Pi,j | j = 1, 2, . . . ,m}, and in a visualisation of G, members of the same
occurrence set Pi are shown as nodes with the same vertical location, with hori-
zontal location determined by their order of appearance in the piece. Members of
the same occurrence set are perceptually similar to one another – sometimes (but
not necessarily) transnationally equivalent. Patterns containing more points are
visualised vertically higher up, while patterns containing fewer points are lower
down. An edge e connects two vertices u, v if the pattern occurrence Pi,j associ-
ated with v is a subset of the pattern occurrence Pk,l associated with u.

In PatternViewer, users can click nodes in the pendular graph to listen to
a corresponding part of music. Unfortunately, only a handful of pieces were
prepared to be visualised (due to the time-intensive nature of defining precisely
which notes in a time window do/not belong to a pattern occurrence), and the
current version of macOS does not support the installation of PatternViewer,
since the software is no longer maintained.

3 Hierarchicalisation of the POP909 Annotations

Repetitive phrase labels for the POP909 dataset are proposed by Dai et al.
[11]. The labels are only linear, however, while (in)exact repetition in music
tends to be full of hierarchy. For instance, Figure 3 summaries the repetitive
patterns of “123 Pinocchio”. The largest repetitive pattern ‘A4B9b4’ appears
twice, highlighted by the red bounding boxes. The labelling along the bottom
part of Figure 3 is the same as that discussed in Section 2.2. The nodes and
edges above this constitute an example of a pendular graph (see description

8 C. Gao et al.

of the PatternViewer at the end of Section 2.3). For the sake of clarity, when
displaying the graphs, we dispense with the bar numbering aspect (i.e., “A4”
becomes “A”).

i4 A4 A4 B9 b4 A4 B9 b4 B9 X5 o2

A A B A B B

ABb ABb

Fig. 3: Hierarchical structure analysis of “123 Pinocchio”, Hey Girl. The small-
est repetitive phrase is labelled by a letter followed by the number of bars.
Phrases labelled with the same letter are (in)exact repetitive, and larger repeti-
tive patterns are highlighted by bounding boxes. The nodes and edges constitue
a pendular graph.

Algorithm 1 Hierarchicalises linear repetitive pattern labels.
Input: Linear, phrase-level repetitive pattern labels (P) of the POP909 dataset
Output: Hierarchical repetitive pattern labels
1: for p ∈ P do
2: Separate phrase labels and bar counts into two arrays as VPhr and VBar.
3: VRep ← get_repeat_subsequences(p)
4: for v ∈ VRep do
5: if Non-repetitive patterns (e.g., “X”, “x”, “i”, and “o”) involved in v then
6: Filter out v
7: else if v only appears in larger patterns then
8: Filter out v
9: else

10: if An occurrence of v overlaps the previous occurrence then
11: Filter out the current occurrence of v
12: end if
13: if The occurrence count of v > 1 then
14: Push v into VOut

15: end if
16: end if
17: end for
18: return VOut

19: end for

In this paper, inspired by Deutsch and Feroe [14], we propose an algorithm to
convert linear, phrase-level repetitive pattern labels into a hierarchical labelling.
Repetitive substrings with the longest length will be labelled as a new pattern.

The pendular graph: Visualising hierarchical repetitive structure in music 9

E.g., phrases “ABb” in “123 Pinocchio” will be gathered as a group. On the
other hand, substrings that never repeat (such as “i”, “X” and “o”) or substrings
that appear only in a larger pattern will not be labelled. For example, “b” in
“123 Pinocchio” will not be labelled since “b” never occurrs independently of
“ABb”. The outline of our algorithm is given in Algorithm 1. This algorithm
takes linear pattern labels (P) of songs as an input, and outputs hierarchical
repetitive pattern labels.

When processing a sequence of letters and numbers p from P, our algorithm
begins by separating phrase labels (letters) and bar counts (numbers) into two
arrays VPhr and VBar. The function get_repeat_subsequences() will return
substrings of VPhr that repeat at least once, in descending order of length,
as well as the index arrays where the first letter of these substrings occur in
the entire string as VRep. For example, when inputting “abcabda”, the function
get_repeat_subsequences() outputs repetitive substrings “ab”, and “a”, and
“b” and the index arrays of occurrences [0, 3], [0, 3, 6], and [1, 4].

The following steps filter out repetitive patterns v ∈ VRep that involve non-
repetitive phrases (lines 5 and 6 of Algorithm 1), or appear only in larger patterns
(lines 7 and 8). For example, “b” in the input “abcabda” will be filtered out, as “b”
appears only in a larger pattern “ab”. Occurrences of v will be filtered out if they
overlap previous occurrences. Then, the number of occurrences of a repetitive
pattern will be checked again after the filtering is complete, and only patterns
whose occurrence count is larger than one will be pushed into the array VOut.
Finally, VOut will be returned for the piece of music. An example hierarchical
structure annotation processed by our algorithm is shown in Listing 2, which is
stored in the layer property of a Composition object (see end of Section 2.1).

The contents of lines 2 and 3 of Listing 2 should be compared with the bottom
part of Figure 3: it is the linear annotation; meanwhile, the contents of lines 4-23
contain the pendular graph rendered in the top part of Figure 3.

4 Interface

Our interactive interface visualises the repetitive patterns of songs hierarchically,
as a graph consisting of vertices and edges. The web interface is developed by
using JavaScript packages: the client side is built mainly using p5.js; the server
side is developed with Fastify and the Node Fetch APIs. The MAIA Util package
[7] is used when processing music data, and Tone.js [21] enables the songs to be
played back dynamically in the browser.

Figure 4 shows an architecture diagram, which is an overview of the work
process of our interface. The whole process starts with a user inputting a number
into the Song Selection Panel. The user’s input will be sent to the server, and
the Change Piece block will check if the input is an integer between 1-909. If
the user’s input is a sensible number, then a corresponding Composition Object
will be requested from the Database, and the Composition Object as well as
a message indicating the song is selected successfully will be sent back to the
Song Selection Panel on the client side. Otherwise, a message with the reason

10 C. Gao et al.

Listing 2 A hierarchical structure annotation example of “123 Pinocchio”.

1 "hierGt": {
2 "pLabel": "iAABbABbBXo",
3 "bars": [4, 4, 4, 9, 4, 4, 9, 4, 9, 5, 2],
4 "pendularGraph": {
5 "ABb": {
6 "edges": [
7 "A",
8 "B"
9],

10 "subsetScore": 0,
11 "occ": [2, 5]
12 },
13 "A": {
14 "edges": [],
15 "subsetScore": 1,
16 "occ": [1, 2, 5]
17 },
18 "B": {
19 "edges": [],
20 "subsetScore": 1,
21 "occ": [3, 6, 8]
22 }
23 }
24 }

The pendular graph: Visualising hierarchical repetitive structure in music 11

for the failure selection will be sent to the client side. After getting the message
back from the server side, the Song Selection Panel will phrase the message, and
decide whether to refresh the Pendular Diagram visualisation.

Server

User’s
input

Database

Composition
Objects

Change
Piece

Request
data

(Check if the input
is an integer

between 1-909) A Composition
ObjectResult

message

Client

Pendular
Graph

Song Selection
PanelInput

a number

Update
User

Fig. 4: An architecture diagram.

A high-fidelity prototype of our proposed interface is shown in Figure 1,
which includes 5 elements:

1. Song selection panel at the top of the page. A user could enter a number
between 1 and 909 in the text input box to select a song to visualise. Once
the user clicks the ‘Submit’ button, the server side will read and process data
of the selected song, and send it to the client side. Then, content related to
the song structure visualisation will be refreshed.

2. Selected song name panel below the song selection panel, which tells the
user which song is selected and visualised.

3. Playback controls can be clicked to start/pause and stop a song.
4. Pendular graph visualisation is the main component of our interface, so-

called because the vertices/nodes resemble pendulums. The code behind this
component parses the hierarchical structure labels annotated by our algo-
rithm (Section 3), and draws them as a pendular graph, where each vertex
represents a repetitive pattern. Horizontal location is determined by appear-
ance in the piece; patterns containing more points are visualised vertically
higher up, while patterns containing fewer points are lower down. An edge
will connect two vertices if one pattern’s point-set representation is a sub-
set of that of another. Users can click nodes in the graph to listen to the
corresponding part of the music.

5. Piano-roll visualisation at the bottom of this page, in which the melody
is coloured in yellow, the secondary melody/lead instruments is coloured in
purple, and the accompaniment is coloured in orange.

5 Discussion

When composing music, artists are carefully introducing repetition to empha-
sise music ideas [25]. Recognising repetitive patterns is also an important step

12 C. Gao et al.

for understanding music [22,20]. Visualising the structure of music can enhance
audiences’ understanding of music, especially when they are listening to a piece
of music for the first time [12]. A web-based interactive interface is developed
by this paper, in which hierarchical repetitive structure of 909 pop songs can be
visualised, and repetitive patterns can be played back by clicking nodes on the
pendular graph. Compared with existing music structure visualisation tools, our
interface has better interactivity, which can also visualise more songs than most
other existing music structure visualisation tools.

During the data pre-processing process, we noticed that most of symbolic
data (MIDI in particular) needs to be quantised carefully before using. For ex-
ample, the downbeats of MIDIs in the POP909 dataset are not aligned to bar
lines correctly, and time signature is missing. So, we first align the downbeats
according to Dai’s annotations [11]. To calculate the time signature of each song
in the POP909 dataset, we assume the time signature of each song is either in
3/4 or 4/4. We could get how many bars each song has by using the phrase-level
annotations as references, and the total count of crotchet beats can be known
from the corresponding MIDI file. Our program estimates the time signature of
each song by determining if the count of crotchet beats calculated by ‘bars ×
beats per bar’ matched that in the MIDI file. After the calculation, we found
that the time signature of over 95% of songs in the POP909 dataset is 4/4, while
only 28 songs are in 3/4. Quantisation for some symbolic data from the internet
could be more complicated especially when MIDIs are recorded by using the
MIDI keyboard directly. Thus, a general quantisation method for symbolic data
is expected to be developed.

The lack of structure is a common problem in music generated by deep learn-
ing based models [10]. In this paper, we developed an interactive interface for
visualising the hierarchical structure of the POP909 dataset, which is a quite
popular dataset for music generation model training. We hope our interface
could inspire researchers in music generation model design on enhancing the
structure of generated music.

5.1 Limitations and Future Work

At the expense of relatively coarse levels of definition – i.e., pattern occurrences
must begin/end at bar beginnings/endings, and they are defined temporally,
meaning all notes existing between two time points are assumed members of a
pattern occurrence (which is less precise than with the PatternViewer visualisa-
tions).

Another limitation of our work is that visualisation is restricted by the la-
belled datasets. The current version of the interface does not support users input
an arbitrary song to visualise its structure. So, future work is to incorporate
pattern discovery algorithms into this system, which will enable the users to
the visualised structure of songs uploaded by themselves. Also, the incorpora-
tion of pattern discovery algorithms is hopefully to solve the problem of pattern
occurrences must begin/end at bar beginnings/endings.

The pendular graph: Visualising hierarchical repetitive structure in music 13

As we mentioned in previous sections, existing datasets with structural an-
notations are either small or large but with linear-level labels only. The lack of
data for evaluation is a reason that restricts the development of pattern discov-
ery algorithms. The POP909 annotations introduced in this paper can act as a
ground truth to evaluate pattern discovery algorithms.

References

1. Barlow, H., Morgenstern, S.: A dictionary of musical themes. Crown Publishers
(1948)

2. Benetos, E., Dixon, S., Duan, Z., Ewert, S.: Automatic music transcription: An
overview. IEEE Signal Processing Magazine 36(1), 20–30 (2018)

3. Bent, I.D., Pople, A.: Analysis. In: Sadie, S., Tyrrell, J. (eds.) The new Grove
dictionary of music and musicians, vol. 1, pp. 526–589. Macmillan, London, UK,
2nd edn. (2001)

4. Bruhn, S.: JS Bach’s Well-tempered Clavier: In-depth analysis and interpretation,
vol. 4. Siglind Bruhn (1993)

5. Chen, T.P., Su, L.: The musical schemagram: Time-scale visualization of repeated
patterns in music. In: 2018 Asia-Pacific Signal and Information Processing As-
sociation Annual Summit and Conference (APSIPA ASC). pp. 1642–1648. IEEE
(2018)

6. Collins, T.: MIREX 2014 competition: Discovery of repeated themes and sections,
2014 (2015)

7. Collins, T., Coulon, C.: MAIA Util: an NPM package for bridging web audio with
music-theoretic concepts. In: Proceedings of the web audio conference. pp. 47–52
(2019)

8. Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. Journal
of New Music Research 24(1), 51–73 (1995)

9. Crawford, T., Badkobeh, G., Lewis, D.: Searching page-images of early music
scanned with omr: a scalable solution using minimal absent words (2018)

10. Dai, S., Yu, H., Dannenberg, R.B.: What is missing in deep music generation? a
study of repetition and structure in popular music. In: Proceedings of 23rd Inter-
national Conference on Music Information Retrieval (2022)

11. Dai, S., Zhang, H., Dannenberg, R.B.: Automatic analysis and influence of hierar-
chical structure on melody, rhythm and harmony in popular music. In: Proceedings
of the 2020 Joint Conference on AI Music Creativity (2020)

12. De Prisco, R., Malandrino, D., Pirozzi, D., Zaccagnino, G., Zaccagnino, R.: Un-
derstanding the structure of musical compositions: Is visualization an effective
approach? Information Visualization 16(2), 139–152 (2017)

13. Deutsch, D.: The processing of structured and unstructured tonal sequences. Per-
ception & psychophysics 28(5), 381–389 (1980)

14. Deutsch, D., Feroe, J.: The internal representation of pitch sequences in tonal
music. Psychological review 88(6), 503 (1981)

15. Endrjukaite, T., Kosugi, N.: Music visualization technique of repetitive structure
representation to support intuitive estimation of music affinity and lightness. Jour-
nal of Mobile Multimedia pp. 049–071 (2012)

16. Goto, M., Ogata, J., Yoshii, K., Fujihara, H., Mauch, M., Nakano, T.: Podcastle
and songle: Crowdsourcing-based web services for spoken document retrieval and
active music listening. In: 2012 Information Theory and Applications Workshop.
pp. 298–299. IEEE (2012)

14 C. Gao et al.

17. Hawthorne, C., Simon, I., Swavely, R., Manilow, E., Engel, J.: Sequence-to-
sequence piano transcription with transformers. In: Proceedings of 22nd Inter-
national Society for Music Information Retrieval Conference (2021)

18. Hayashi, A., Itoh, T., Matsubara, M.: Colorscore: Visualization and condensation
of structure of classical music. Knowledge Visualization Currents: From text to art
to culture pp. 113–128 (2013)

19. Lamere, P.: The infinite jukebox. https://eternalbox.dev/jukebox_index.html
20. Lerdahl, F., Jackendoff, R.S.: A Generative Theory of Tonal Music, reissue, with

a new preface. MIT press (1996)
21. Mann, Y.: Interactive music with tone. js. In: Proceedings of the 1st annual Web

Audio Conference. Citeseer (2015)
22. Meyer, L.B.: Emotion and meaning in music. University of chicago Press (2008)
23. Nikrang, A., Collins, T., Widmer, G.: Patternviewer: An application for explor-

ing repetitive and tonal structure. In: J.-SR Jang, M. Goto & JH Lee (Chairs),
Late-Brake Demo of the Proceedings of the 15th International Society for Music
Information Retrieval Conference. ISMIR, Taipei, Taiwan (2014)

24. Schoenberg, A.: Fundamentals of Musical Composition. Faber and Faber (1967)
25. Schoenberg, A.: Style and idea: Selected writings. Univ of California Press (2010)
26. Tomašević, D., Wells, S., Ren, I.Y., Volk, A., Pesek, M.: Exploring annotations

for musical pattern discovery gathered with digital annotation tools. Journal of
Mathematics and Music 15(2), 194–207 (2021)

27. Walshaw, C.: The abc music standard 2.1. technical report. https://abcnotation.
com (2011)

28. Wang, Z., Chen, K., Jiang, J., Zhang, Y., Xu, M., Dai, S., Bin, G., Xia, G.: Pop909:
A pop-song dataset for music arrangement generation. In: Proceedings of 21st
International Conference on Music Information Retrieval (2020)

29. Wattenberg, M.: Shape of song. http://www.turbulence.org/Works/song/
30. Wattenberg, M.: Arc diagrams: Visualizing structure in strings. In: IEEE Sym-

posium on Information Visualization, 2002. INFOVIS 2002. pp. 110–116. IEEE
(2002)

https://eternalbox.dev/jukebox_index.html
https://abcnotation.com
https://abcnotation.com
http://www.turbulence.org/Works/song/

	The Pendular Graph: Visualising Hierarchical Repetitive Structure in Point-set Representations of the POP909 Music Dataset

