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ABSTRACT 
This paper describes the Stravinsqi-Jun2015 algorithm, and 
evaluates its performance on the MediaEval 2015 C@merata task. 
Stravinsqi stands for STaff Representation Analysed VIa Natural 
language String Query Input. The algorithm parses a query string 
that consists of a natural language expression concerning a 
symbolically represented piece of music (which the algorithm 
parses also), and then identifies where in the music event(s) 
specified by the query occur. For a given query, the output is a list 
of time windows specifying the locations of the relevant events. 
Time windows output by the algorithm can be compared with 
time windows specified by music experts for the same query-
piece combinations. Across a collection of twenty pieces and 200 
questions, Stravinsqi-Jun2015 had recall .794 and precision .316 
at the measure level, and recall .739 and precision .294 at the beat 
level. The paper undertakes a preliminary analysis of where 
Stravinsqi might be improved, identifies applications of the 
C@merata task within the contexts of music education and music 
listening more generally, and provides a constructive critique of 
some of the question categories that are new this year.   

1. INTRODUCTION 
The premise of the C@merata task [1] is that it is interesting 

and worthwhile to develop algorithms that can (1) parse a natural 
language query about a notated piece of music, and (2) retrieve 
relevant time windows from the piece where events/concepts 
mentioned in the query occur. The premise is strong, if we 
consider that each year in the U.S. alone over 200,000 freshman 
students declare music their intended major [2, 3], and that there 
is a line connecting the types of queries being set in the 
C@merata task and the questions these students are taught (or, by 
college, have already been taught) to answer. A typical question 
from a U.K. music appraisal exam sat at age eighteen reads “You 
will hear a short excerpt of music, played three times. 

1. “What is the tonality of the excerpt? [E.g., major/minor] 

2. “Which one of hemiola, ostinato, pedal, sequence is used in 
the instrumental introduction? 

3. “Name the cadence at the end of the instrumental 
introduction. [I.e. perfect, imperfect, plagal, or interrupted] 

4. “Name the interval sung to the word floating in line 6. 
[Answer e.g., perfect fifth] 

5. “How many different chords are used in the chorus?” 
[Answer e.g., if the chorus chords were I, IV, I, V repeated, 
then three different chords are used] [4] 

Appraisal of music from the Western classical tradition – that 

is, gaining explicit knowledge of the inner workings of pieces and 
their historical context – is a core part of music syllabi across 
Europe, North America, and Asia. The C@merata task, apart from 
posing an interesting research problem at the intersection of music 
theory, music psychology, music computing, and natural language 
processing (NLP), could lead to new applications that assist 
students, and music lovers more generally, in gaining music 
appraisal skills. 

Other applications of research motivated by the C@merata 
task include sustained and enriched support of work in 
musicology [5], and informing solutions to various music 
informatics tasks, such as generation of music in an intended style 
[6] or expressive rendering of staff notation [7], where systems for 
either task may benefit from being able to automatically extract, 
say, cadence locations and/or changes in texture. 

This paper is structured as follows. An overview of the 
Stravinsqi-Jun2015 algorithm is given in section 2, as well as a 
description of its being run on the 2015 C@merata task questions. 
Section 3 presents the results of this run and an analysis of where 
and why Stravinsqi's output and the ground truth diverge. A 
discussion of question categories that we found challenging or 
problematic appears in Section 4, followed by some concluding 
observations. 

2. APPROACH 
2.1 Overview 

The Stravinsqi-Jun2015 algorithm (hereafter, Stravinsqi), 
which was entered into the C@merata task, is part of a Common 
Lisp package called MCStylistic-Jun2015 that has been under 
development since 2008 [8]. The MCStylistic package, free and 
cross-platform, supports research into music theory, music 
cognition, and stylistic composition, with new versions released 
on an approximately annual basis.1 In addition to Stravinsqi, 
MCStylistic includes implementations of other algorithms from 
the fields of music information retrieval and music psychology, 
for tonal and metric analysis [e.g., 9], and for the discovery of 
repeated patterns (e.g., motifs, themes, sequences) [10]. 

A flow diagram outlining the Stravinsqi algorithm is given in 
Figure 1. The following aims to be a self-contained overview of 
Stravinsqi, while focusing on the differences between this year’s 
(Stravinsqi-Jun2015) and last year’s submission (Stravinsqi-
Jun2014) [11]. As indicated in Figure 1, step 1 of Stravinsqi 
involves extracting the question string and divisions value from 
the question file. Step 2 parses the question string for mention of 
bar restrictions, such as “minim in measures 6-10” or “D# in bar 
8”, storing this information in a pair, i.e. (6, 10) or (8, 8) 
respectively, which will be used later to restrict imported music 
representations to certain time intervals. An edited version of the 
question string absent the restriction, such as “minim” or “D♯”, is 
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passed on for subsequent NLP. If no such restriction appears in 
the question, then the bar restriction pair is set to nil (empty) and 
the question string is unaltered. 

Steps 3 and 4 are where the NLP proper begins. One of the 
questions from the task description, “two quavers against a minim 
in the bass” [12, p. 9], prompted consideration of how synch-
ronous (“against”) and asynchronous (“followed by”) commands 
might be combined and interpreted, since “two quavers” would be 
converted by Stravinsqi to “quaver followed by quaver”, and so 
result in the synchronous/asynchronous combined query of 
“quaver followed by quaver against a minim in the bass”. Putting 
the “in the bass” suffix to one side, there are two ways that this 
query might be interpreted: 

1. (quaver followed by quaver) against (a minim); 

2. (quaver) followed by (quaver against a minim). 

These differing interpretations may correspond to different 
types of musical events. In the first instance, both quavers must 
sound at the same time as the minim. In the second instance, only 
the second quaver needs to sound against the minim. Thinking of 
it another way, (1) implies (2), but (2) does not imply (1). Since 
there was an implicit followed/against combined question of type 
(1) in the task description but not of type (2), Stravinsqi splits 
queries by synchronous commands first (step 3) and then further 
by asynchronous commands (step 4). The string “two quavers 
against a minim” would emerge as (“two quavers” “minim”) from 
step 3 in Figure 1, and as ((“quaver” “quaver”) (“minim”)) from 
step 4. As another example, “D followed by A against F followed 
by F” would emerge as (“D followed by A” “F followed by F”) 
from step 3, and as ((“D” “A”) (“F” “F”)) from step 4. An 
instance of this query occurs in Figure 2, b.1. In a use-case 
scenario, rather than assuming this synchronous/asynchronous 
splitting order, it may be preferable to warn a user that their 
synchronous/asynchronous query is ambiguous, and to ask which 
of the alternatives they mean. 

Generalising from examples above such as “D followed by A 
against F followed by F”, which is parsed as 
((“D” “A”) (“F” “F”)), a question string emerges from step 4 as 
some nested list of strings ((s1,1 s1,2 ... s1,n(1)) (s2,1 s2,2 ... s1,n(2)) ... 
(sm,1 sm,2 ... sm,n(m))), where each si,j is a query element. Examples 
of query elements include “D”, “A♭4 eighth note”, “perfect fifth”, 
“melodic interval of a 2nd”, etc. 

In step 5, point-set representations of the relevant piece are 
loaded. The xml2hum script is used to convert each piece from 
its MusicXML format to kern format [13].2 Parser functions in 
MCStylistic import the kern file into the Lisp environment, giving 
the following representations, known as point sets: 

• Instrument/staff and clef names at the beginning of each 
staff; 

• Time signature specifications (including any changes), 
expressed by the bar number where the time signature is 
specified or changes, together with the number of beats per 
bar, the type of beat, and the corresponding ontime. Ontime 
is the incrementing time in staff notation measured in 
crotchet beats, with 0 for bar 1 beat 1. A note beginning at 
measure 4 beat 1 in a piece with four crotchets per bar has 
ontime 12, for example; 

• The notes of the piece, each represented by a five-
dimensional point consisting of the ontime of the note, its 
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MIDI note number (MNN), its morphetic pitch number 
(MPN) [10], its duration in crotchet beats, and its numeric 
staff number (an integer beginning with zero for the top 
staff). MPN is a numeric encoding of staff height, with 60 
for C♭4, C♮4, C♯4, 61 for D♭4, D♮4, D♯4, etc. Morphetic 
pitch helps to disambiguate MNNs that refer to one of 
several pitches depending on the tonal context (e.g., does 
61 refer to C♯4 or D♭4?). Setting MNN = 61, if MPN = 60 
then the pitch must be C♯4, whereas if MPN = 61 the pitch 
must be D♭4. As was discussed in more detail 
previously [11], MPN is also useful for identifying intervals 
absent diminished, minor, perfect etc. qualifiers: a 
morphetic pitch difference of 1 always encodes some type 
of 2nd, a difference of 2 always encodes some type of 3rd, 
and so on; 

• A point-set representation of the piece with three extra 
dimensions, one each for articulation, dynamics, and lyrics 
information. If, for example, a note is marked staccato, then 
the dynamics entry of the point will contain “.”; 

• The rests of the piece, each represented by a three-
dimensional point consisting of the ontime of the rest, its 
duration, and staff number; 

• The notes of the piece that are involved in ties, and the 
nature of those ties (e.g., tied from the previous note, tied to 
the following note, or both), because this information is not 
included in the above-mentioned note point set, but some 
questions refer specifically to tied notes; 
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Figure 1. Flow diagram for the Stravinsqi-Jun2015 
algorithm. 



• A texture point set, where each element consists of the time 
window where a texture label applies (one of 
“monophonic”, “homophonic”, “melody with 
accompaniment”, and “polyphonic”), the texture label 
itself, and the confidence with which this label applies 
(value in [0, 1]).3 

After the point sets are loaded, they are restricted to those 
points that belong to a certain bar-number range, if a range was 
extracted from the question string. MCStylistic utility functions 
ontime-of-bar&beat-number and bar&beat-number-
of-ontime, as well the time signature specifications, make 
calculating these restrictions relatively straightforward. 

Temporarily, in step 6 of Figure 1, each question element si,j 
from step 4 is treated independently. A query element si,j is passed 
to seventeen music-analytic sub-functions, each of which tests 
whether si,j is a relevant query for that function, and, if so, 
searches for instances of the query in the piece/excerpt of music. 
If the query is irrelevant to a sub-function, that function returns 
nil. If the query is relevant but no instances of it are detected, 
the function returns either nil or a message string to the effect 
“relevant query but no instances detected”. This message string 
prevents certain false-positive results begin returned (see below 
for an example). 

One of the new music-analytic sub-functions this year is 
called chord-time-intervals. If the query element does 
not contain the word “chord”, this function will return nil. If, on 
the other hand, the query element is something like “D major 
chord”, “chord E G B”, or “minim chord”, then chord-time-
intervals undertakes further analysis to determine which 
pitches and/or durations are to be sought in simultaneities. 
Separate functions from the set of seventeen music-analytic sub-
functions (triad-time-intervals and triad-
inversion-time-intervals) handle query elements such 
as “V7” or “tonic triad in first inversion”. 

Output from each of the music-analytic sub-functions (which 
can be time intervals, nil, or a message string) is stored in a list, 
with output from more specific functions appearing higher up in 
that list than output from more generic functions. For instance, 
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identification of some other higher-level music-theoretic 
concepts, please see subsections 2.3 and 2.4 of [11]. 

three music-analytic sub-functions are duration&pitch-
class-time-intervals, pitch-class-time-inter-
vals, and duration-time-intervals, with the first of 
these being more specific than the second or third. For an element 
such as “dotted crotchet G” querying the excerpt in Figure 2, 
duration&pitch-class-time-intervals will return 
the time interval [5, 6.5), corresponding to the dotted-crotchet G 
in the Soprano in b.2. The function duration-time-
intervals will return this time interval, as well as the time 
interval [0, 1.5), corresponding to the dotted crotchet in the Tenor 
in b.1. The function duration-time-intervals returns 
this extra time interval because it does not know that a particular 
pitch class is sought. Likewise, the function pitch-class-time-
intervals returns [5, 6.5), as well as [4, 6) (G in Alto, b.2) and 
[6, 8) (G in Bass, b.2). 

For a query element si,j, the set of time intervals Ti,j belonging 
to the first (most specific) function is selected and passed on to 
subsequent steps – the set {[5, 6.5)} in our example. Hence, false-
positive results from more generic functions (e.g., [0, 1.5), [4, 6), 
[6, 8) in our example) are prevented from being returned. Message 
strings along the lines of “relevant query but no instances 
detected” help to prevent another kind of false-positive result, 
when the excerpt in Figure 2 is queried with elements such as “B 
dotted crotchet”. There is no dotted-crotchet B in this excerpt, so 
duration&pitch-class-time-intervals ought on first 
glance to return nil. There are, however, separate instances of 
the pitch-class B in Figure 2, as well as dotted crotchets, meaning 
both pitch-class-time-intervals and duration-
time-intervals will return false-positive results. To prevent 
these false-positives propagating to subsequent steps (and 
eventually harming the algorithm’s precision), the function 
duration&pitch-class-time-intervals outputs a 
message string rather than nil. The message indicates that the 
query was relevant to the function but that no instances were 
detected. The presence of a message string in more specific 
functions (duration&pitch-class-time-intervals) is 
used as a predicate for nullifying (removing) time intervals output 
by related, more generic functions (pitch-class-time-
intervals and duration-time-intervals). 

The output of step 6 is a nested list of time-interval sets, 
((T1,1 T1,2 ... T1,n(1)) (T2,1 T2,2 ... T1,n(2)) ... (Tm,1 Tm,2 ... Tm,n(m))), one 
for each query element si,j, some of which may be empty. The 
purpose of steps 7 and 8 is to determine whether any 
combination(s) of these time intervals satisfy the constraints 
imposed by various synchronous and asynchronous parts of the 
question string. Stravinsqi will allow any plausible sequence of 
time intervals τ1 ∈ Tk,1, τ2 ∈ Tk,2,…, τn(k) ∈ Tk,n(k) to be passed on 
for further processing. For time-interval sets Tk,1 Tk,2 ... T1,n(k), 
there may be l(k) such plausible sequences. Two time intervals [a, 
b] and [c, d] are considered plausible if the original query contains 
“followed by” and they are adjacent (b = c), or if the original 
query contains, say, “followed three bars later by” and c − b is the 
appropriate distance apart. A plausible sequence of time intervals 
τ1 = [a1, b1], τ2 = [a2, b2],…, τn(k) = [an(k), bn(k)] is merged into one 
time window U = [a1, bn(k)] and passed to step 8. 

The input to step 8 is a nested list of merged time intervals 
((U1,1 U1,2 ... U1,l(1)) (U2,1 U2,2 ... U1,l(2)) ... (Um,1 Um,2 ... Um,l(m))), 
such that Ui,j is the jth merged time interval for the ith part of a 
question string containing m synchronous parts. A useful way to 
think of the time intervals Ui,j is arranged as a jagged two-
dimensional array (table) with m rows and l(i) columns in row i. 
If, visiting each row precisely once, there exists some column 

Figure 2. Bars 1-2 of ‘Ave Maris Stella’ from Vespro 
della Beata Vergine (1610) by Claudio Monteverdi (1567-

1643). 



index j(i) such that the intersection of the corresponding intervals 
U1,j(1), U2,j(2),…, Um,j(m) is nonempty, then v = ∩i=1,2,…,m Ui,j(i) is a 
time interval output by step 8. There may be none, one, or several 
such distinct time intervals, v1, v2,…, vr.  

The “Found” and “nil” labels attached to arrows emanating 
from steps 6, 7, and 8 in Figure 1 indicate how the presence or 
absence of time intervals emerging from these steps can propagate 
to a final output time interval. Supposing, for instance, that the 
question string is “D followed by A against F followed by F” but 
that no pitch-class D appears in the piece. Then there is nil for at 
least one of the sets output by step 6, which means there is nil 
for at least one of the time intervals output by step 7, which means 
that a nonempty intersection of time intervals does not exist in 
step 8, and so no answer passages are returned. 

The final step of Stravinsqi, labeled Step 9 in Figure 1, 
comprises the conversion of the time intervals v1, v2,…, vr into the 
XML format required by the task. Again, the MCStylistic function 
bar&beat-number-of-ontime is helpful here. 

2.2 Procedure 
In the overview paper for the task [1], Stravinsqi is labelled 

DMUN03. The differences between this run and the other 
submitted runs (DMUN01 and DMUN02) are not remarkable – 
suffice it to say we manipulated the use of the divisions value for 
answering synchronous questions, to investigate its effect on 
precision. As the xml2kern script is becoming increasingly out 
of date, the majority of the test week was spent converting the 
MusicXML files to kern files, if necessary re-encoding the files to 
correct sources of errors. The test data was opened in order to 
check for any knock-on effects of these error corrections, but no 
post-check alterations were made to the Stravinsqi algorithm. 
Naturally, in the last two weeks we have looked through the test 
questions in more detail, so as to make relevant comments here. 

3. RESULTS 
The evaluation is based on four metrics: measure recall 

(U.K., bar recall), measure precision, beat recall, and beat 
precision. If, for a given question, an algorithm returns k of the m 
correct beginning and ending bar number pairs at which the 
queried event occurs, then its measure recall for this question is 
k/m. If it returns n incorrect beginning/ending bar number pairs 
also, then its measure precision is k/(m + n). Beat recall and 
precision are defined similarly, where the algorithm must be 
correct not only up to bar numbers, but up to the exact beat 
numbers as well. 

Figure 3 contains a summary of results for the Stravinsqi 
algorithm across various question categories. The mean measure 
recall across all 200 questions, indicated by the black line next to 
the “Mean” label, is .794, and the mean measure precision, 
indicated by the blue line, is .316. The mean beat recall (green 
line) and beat precision (red line) are both slightly lower than their 
measure counterparts (.739 and .294 respectively), but in general 
it can be assumed that if Stravinsqi returned the correct 
beginning/ending measure number pairs for a question, then it was 
also able to identify the relevant beats. Stravinsqi had the highest 
measure and beat recall of any algorithm submitted to the 2015 
C@merata task [1] and the third highest measure and beat F1 
score (F1 = 2PR/(P + R), where P is precision and R is recall). 

Across eight of the eleven question categories shown in 
Figure 3 (Melody 1, Melody n, Harmony, Articulation, 
Instrument, Clef, Follow, and Synch), Stravinsqi achieves 
consistently high recall of approximately .75. For the remaining 
three categories (Time Sig., Key Sig., and Texture) it is less 
successful. Overall, the results suggest the need to investigate 

Stravinsqi’s precision being lower than its recall, so we will 
address and exemplify some issues now. 

We have not yet incorporated in Stravinsqi restrictions to 
notes occurring after particular clef, time signature, or key 
signature changes. A query such as “G4 in the key of G major”, 
which does not occur in Figure 2, say, would be parsed instead as 
“G4”, which does occur in Figure 2. Sometimes, therefore, the 
recall of Stravinsqi remains high for such questions, but the 
precision will be negatively impacted. 

The design of Stravinsqi is motivated more by music-
perceptual than typographical concerns, based on the premise that 
music is primarily an auditory-cognitive phenomenon, and a 
visuo-cognitive phenomenon secondarily. When music perception 
and music theory collide, as they do occasionally in the 
C@merata task and beyond [14], Stravinsqi's precision can be 
adversely affected. According to the task description, consecutive 
elements “must both be on the same stave” [12, p. 7]. So if we 
were to query the excerpt in Figure 2 with the question “D 
followed by A”, then the only valid answer would correspond to 
the D followed by A in b.1 of the Soprano. If the D appeared in 
some other staff (a swap with the Alto F, say), the answer would 
no longer be valid according to the task description, due to the 
typographical alteration. Even so, the altered and original excerpts 
may sound indistinguishable. Stravinsqi would still return an 
answer for this altered version, however, since being motivated by 
music-perceptual concerns (i.e., how the music sounds), it does 
not require consecutive question elements to be on the same staff. 
It would return a second answer also corresponding to the quaver 
D of the Tenor followed by the minim A of the Soprano in b.1. 
When music perception and music theory collide in this fashion, 
Stravinsqi tends to find the correct answers according to the task 
description, but also some extra answers that involve elements on 
different staves, which has a detrimental effect on its precision. 

Beyond precision issues, it is possible to use Stravinsqi’s 
performance on specific questions to make some inferences about 
potential inconsistencies between the task description/training 
collection, and test collection. Chord identification (e.g., “chord of 
E G B” as separate from Roman-numeral analysis) was new this 
year, falling under the harmony category. For Question 58, “chord 
of D minor in measures 109-110”, for piece 6, the second 
movement from String Quartet in F major op.18 no.1 by Ludwig 
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van Beethoven (1770-1827), Stravinsqi scored maximally on all 
metrics. It was necessary for the chord identification algorithm to 
look across all four parts (Violin I, Violin II, Viola, and Cello) to 
retrieve notes fitting the requested D-minor chord template, and 
there were two such chords in b.110. For Question 127, “quarter 
note chord D3 A3 C4”, for piece 13, the first movement from 
Piano Sonata in C major K545 by Wolfgang Amadeus Mozart 
(1756-1791), Stravinsqi scored zero on all metrics. There is a 
quarter-note chord of D3, A3, C4 in the left hand on the final beat 
of b.27, but, as with Question 58, Stravinsqi’s chord identification 
algorithm looked across all parts (i.e., the right hand also) because 
the question did not specify “in the left hand” or “in the bass clef”. 
In the right hand against the quarter-note chord are four 
semiquavers, C5, A4, F♯4, A4, which means that across all parts, 
there is no quarter-note chord but rather four chords each lasting a 
semiquaver, where some notes are held over from/to 
previous/succeeding simultaneities: (1) D3, A3, C4, C5; (2) D3, 
A3, C4, A4; (3) D3, A3, C4, F♯4; (4) same as (2). The task 
description stated, “no other notes must be sounding” apart from 
those pitch classes specified in the chord, but it was not clear 
whether this applied to pitch and octave specifications also.  

4. DISCUSSION AND CONCLUSIONS 
As per last year, the C@merata task description [12] was 

helpful and the training/test data provided a springboard for 
interesting research, reflecting a considerable amount of time and 
effort on the part of the organisers. The following comments are 
not intended as criticisms of the task, but as ideas for guiding the 
task in future years, to ensure it remains relevant as a basis for 
cutting-edge research at the intersection of music theory, music 
psychology, music computing, and NLP. 

4.1 Arpeggio and Scale 
For the first time this year, the C@merata task included 

queries relating to arpeggios and scales. These queries, like 
cadence, triad, and texture questions last year, refer to inherently 
fuzzy concepts (as opposed to queries such as  “crotchet A♭4” or 
“fermata minim”, where answers are either definitely right or 
definitely wrong). We devote some space to discussing definitions 
and examples of arpeggios and scales, therefore, since future 
iterations of the C@merata task might involve additional 
instances of similarly complex concepts, and these need to be 
incorporated in a music-theoretically appropriate manner. 

The generally accepted definition of arpeggio is the 
“sounding of the notes of a chord in succession rather than 
simultaneously” [15]. The definition of arpeggio given in the task 
description is a sequence of at least three notes, all ascending or 
all descending, and “for simplicity, each note is defined to be 
separated from the previous one by a third (major or minor) or a 
fourth (perfect)” [12, p. 4]. The definition includes further, 
auxiliary remarks about accidentals, which are inherited from a 
preceding definition of scale. It is not clear whether other parts of 
the scale definition should be inherited also (e.g., the sequence of 
notes should “not contain any rests”). There are numerous 
examples of scales and arpeggios that contain rests: for instance, 
Figure 4 b.47 contains a C-major arpeggio in the piano left hand, 
C2, E2, G2, C3,  followed by an F-major arpeggio, where notes 
are separated by rests. Specifying that the sequence of notes in a 
scale or arpeggio should not contain rests might not lead to an 
appropriate definition in general. 

The most significant way in which the accepted and 
C@merata definitions of arpeggio diverge is in the former’s 
mention of “notes of a chord” and the latter’s reliance on melodic 
intervals of a third or fourth. One realisation of a C7 arpeggio is 

C2, E2, G2, B♭3, C3. The interval between the final two notes 
here is a second, so it does not conform to the C@merata 
definition, although it is an arpeggio. According to the accepted 
definition, a serviceable arpeggio-identifying algorithm needs to 
build on a successful chord identification algorithm, rather than 
trying to identify arpeggios in terms of melodic intervals. Future 
C@merata questions might aim to reward the development of 
successful chord and triad identification algorithms, in the 
presence and absence of non-chord tones, as this would fill a gap 
in existing research. The current approach, of sidestepping this 
research gap and defining a complex concept in terms of other 
properties, might not provide the strongest basis for future 
research. 

The generally accepted definition of scale is a sequence of 
notes, all ascending or all descending, “long enough to define 
unambiguously a mode, tonality, or some special linear 
construction, and that begins and ends (where appropriate) on the 
fundamental note of the tonality or mode” [16]. The definition of 
scale given in the task description also began by stipulating an all-
ascending or all-descending sequence of notes, adding that it must 
“consist of contiguous notes of the scale and not contain any rests. 
No note is repeated unless we reach the octave. However, a scale 
does not need to be a complete octave. For simplicity we will say 
that each note in the scale will not carry an accidental except from 
the key signature. This will effectively make all scales either 
major or natural minor. So C D E F G is a scale (C major) and A 
B C D is a scale (A minor)” [12, p. 4]. An issue with the 
C@merata definition is that the scale does not have to begin on 
the fundamental note, so while the pitch-classes C, D, E, F, G 
belong to the C major scale, they belong also to A natural minor, 
F major, and D natural minor. Disqualifying note sequences that 
contain accidentals might also lead to an inappropriate definition. 
For example, the opening four pitch classes in Figure 5, C, B♭, 
A♭, G♮, would be disqualified since G♮ does not appear in the 
key signature, but otherwise they begin on C and proceed to 
define C natural minor. According to the accepted definition, a 
serviceable scale-identifying algorithm needs to build on an 
algorithm for identifying segments that unambiguously define a 
mode, tonality, or some special linear construction, rather than 
trying to identify scales in terms of contiguous, non-accidental 
notes. Again, future C@merata questions might aim to reward the 
development of such supporting algorithms, as this would fill a 
gap in existing research. 

To add weight to our observation above that some concepts 
are inherently fuzzy, the pitch classes of b.351-352.1 in Figure 5 
unambiguously define the scale of E♭ major or C natural minor. 
This ten-pitch-class sequence begins but does not end on C, 
however, so according to the accepted definition (“begins and 
ends on the fundamental note”), it can be neither E♭ major nor C 

Figure 4. Bars 47-48 of the first movement from 
Arpeggione Sonata in A minor D821 by Franz Schubert 

(1797-1828). 
 



natural minor. Furthermore, only seven of the nine intervals 
descend, with one upward inflection between G♮ and A♭ and one 
repeated note, which contradicts both definitions’ specifications of 
all ascending or all descending notes. Many listeners would still 
say that b.351 in Figure 5 sounds scalic, however, even if it does 
not conform to all criteria. Bars 352-353, while also scalic, are 
more complicated still, with Tchaikovsky delineating a set of nine 
pitch classes that are not modal, tonal, or linear in construction. 

Although we did not include it in this year’s submission, we 
implemented a proof-of-concept algorithm with the aim of 
identifying both arpeggios and scales. Our motivation was to 
scrutinise the task definitions of arpeggio and scale more 
thoroughly, and to lay the groundwork for future C@merata 
question categories that also comprise more complex musical 
concepts. One algorithm, with one small alteration, seemed to 
capture arpeggio and scale concepts, which is perhaps not 
surprising since both can be considered sequential musical 
structures. Although their identification might be achieved via the 
use of composite queries (i.e. “C4 followed by E4 followed by 
G4” is one realisation of a C-major arpeggio), we formed a 
hierarchical set of rules according to the task description [12], 
leading to the definition of a more generic results space. 

The proof-of-concept algorithm does not incorporate NLP, 
but instead searches for note sequences that adhere to specific 
rules, which at the moment are not available for parameterisation. 
In addition to the C@merata definitions for these concepts, some 
additional assumptions were made to simplify the process. During 
note import, only single notes (i.e. neither rests nor chords) from 
each staff are taken into consideration. This assumption, that a 
sequential structure is monophonic, simplifies the identification 
processes, as otherwise voice segregation procedures have to be 
considered [17]. The left-hand red notes in bar 17 of Figure 6 
illustrate such a case arising from the repetition of a chord, where 
if the chords were to be segregated into their constituent notes, 
this would result in many identifiable – but nonetheless 
perceptually false or very difficult to hear – arpeggios. In addition, 
the ascending movement of inversions of the same chord in the 
right hand would result in four different arpeggios (indicated by 
four different colours in Figure 6), where a more precise answer 
here indicating only one arpeggio might suffice. 

The algorithm, which is implemented in music21 [5], 
considers each note only once, using a dynamic data structure that 
we refer to as a trail list. Notes that comply with the rules for a 
sequence type (arpeggio or scale) are aggregated into the trail list. 
For a given note ni , and N = (ni – j ni – j + 1 … ni – 1) an existing trail 
list, the algorithm goes through the series of rules that build up the 
sequence type. Failure at any point of this rule series causes the 
existing trail list N to be output, if j is sufficiently large. The 
dynamic trail list is emptied, Nʹ = (), since the sequence cannot be 
continued, and if the current note ni  that breached a rule is scale-
valid then it is added as the first element of the new trail list, 
Nʹ = (ni). The rule series is the same for both arpeggios and scales 
– the only difference being in the values associated with 
permissible intervals between adjacent notes. This is a preliminary 
approach to the identification of sequential structures, which 
helped us to interrogate some aspects of the arpeggio and scale 
definitions, and we will aim to incorporate it into the Stravinsqi 
algorithm for next year.  

4.2 Conclusion 
This paper has provided an overview of the Stravinsqi-

Jun2015 algorithm, and described its performance on the 2015 
C@merata task. Stravinsqi achieved high recall (approximately 
.75) in eight of the eleven question categories, and had the highest 

measure and beat recall of any algorithm submitted to the task [1]. 
Its measure and beat F1 score was third highest overall, inviting 
investigation of potential issues with the algorithm’s precision. 
Some of these issues were addressed and exemplified in section 3, 
but further analysis of the results is required to determine whether 
Stravinqi’s precision can be improved while adhering to our 
general design principle of favouring music-perceptual over 
typographical concerns. That is, music is heard as well as seen, so 
if “D followed by A” occurs in terms of sonic events but not in 
terms of the staff notation (e.g., these pitch classes do follow one 
another but not in the same staff), then this passage should still be 
amongst the answers. 

In the introduction, it was remarked that there is a line 
connecting the types of queries being set in the C@merata task 
and the examination questions that students of the Western 
classical tradition are taught to answer. Five examples of such 
examination questions were provided. This year, C@merata 
queries happened to overlap with part of examination question 2 
(pedal) and fully with examination question 4 (lyric plus melodic 
interval). Unlike last year, however, this year’s C@merata test set 
was lacking cadence and functional harmony queries, which 
would have overlapped with examination questions 3 and 5 
respectively. We perceived a general tendency to replace 
musically interesting questions (e.g., concerning cadence, triad, 
hemiola, ostinato, sequence, etc.) with questions that were 
linguistically challenging to parse but of less musical relevance 
(e.g., Question 130, “fourteen sixteenth notes against a whole note 
chord in the bass”). Next year, we would welcome the 
reintroduction of more musically interesting (if complex) question 
categories, to reestablish and strengthen the line that connects 
C@merata queries with concepts that are relevant for music 
students and enthusiasts. 
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