
DMUN at the MediaEval 2015 C@merata
Task: a description of the Stravinsqi Algorithm

 Andreas Katsiavalos and Tom Collins
Faculty of Technology

De Montfort University
Leicester, UK

+44 116 207 6192
tom.collins@dmu.ac.uk

ABSTRACT
This paper describes the Stravinsqi-Jun2015 algorithm, and
evaluates its performance on the MediaEval 2015 C@merata task.
Stravinsqi stands for STaff Representation Analysed VIa Natural
language String Query Input. The algorithm parses a query string
that consists of a natural language expression concerning a
symbolically represented piece of music (which the algorithm
parses also), and then identifies where in the music event(s)
specified by the query occur. For a given query, the output is a list
of time windows specifying the locations of the relevant events.
Time windows output by the algorithm can be compared with
time windows specified by music experts for the same query-
piece combinations. Across a collection of twenty pieces and 200
questions, Stravinsqi-Jun2015 had recall .794 and precision .316
at the measure level, and recall .739 and precision .294 at the beat
level. The paper undertakes a preliminary analysis of where
Stravinsqi might be improved, identifies applications of the
C@merata task within the contexts of music education and music
listening more generally, and provides a constructive critique of
some of the question categories that are new this year.

1. INTRODUCTION
The premise of the C@merata task [1] is that it is interesting

and worthwhile to develop algorithms that can (1) parse a natural
language query about a notated piece of music, and (2) retrieve
relevant time windows from the piece where events/concepts
mentioned in the query occur. The premise is strong, if we
consider that each year in the U.S. alone over 200,000 freshman
students declare music their intended major [2, 3], and that there
is a line connecting the types of queries being set in the
C@merata task and the questions these students are taught (or, by
college, have already been taught) to answer. A typical question
from a U.K. music appraisal exam sat at age eighteen reads “You
will hear a short excerpt of music, played three times.

1. “What is the tonality of the excerpt? [E.g., major/minor]

2. “Which one of hemiola, ostinato, pedal, sequence is used in
the instrumental introduction?

3. “Name the cadence at the end of the instrumental
introduction. [I.e. perfect, imperfect, plagal, or interrupted]

4. “Name the interval sung to the word floating in line 6.
[Answer e.g., perfect fifth]

5. “How many different chords are used in the chorus?”
[Answer e.g., if the chorus chords were I, IV, I, V repeated,
then three different chords are used] [4]

Appraisal of music from the Western classical tradition – that

is, gaining explicit knowledge of the inner workings of pieces and
their historical context – is a core part of music syllabi across
Europe, North America, and Asia. The C@merata task, apart from
posing an interesting research problem at the intersection of music
theory, music psychology, music computing, and natural language
processing (NLP), could lead to new applications that assist
students, and music lovers more generally, in gaining music
appraisal skills.

Other applications of research motivated by the C@merata
task include sustained and enriched support of work in
musicology [5], and informing solutions to various music
informatics tasks, such as generation of music in an intended style
[6] or expressive rendering of staff notation [7], where systems for
either task may benefit from being able to automatically extract,
say, cadence locations and/or changes in texture.

This paper is structured as follows. An overview of the
Stravinsqi-Jun2015 algorithm is given in section 2, as well as a
description of its being run on the 2015 C@merata task questions.
Section 3 presents the results of this run and an analysis of where
and why Stravinsqi's output and the ground truth diverge. A
discussion of question categories that we found challenging or
problematic appears in Section 4, followed by some concluding
observations.

2. APPROACH
2.1 Overview

The Stravinsqi-Jun2015 algorithm (hereafter, Stravinsqi),
which was entered into the C@merata task, is part of a Common
Lisp package called MCStylistic-Jun2015 that has been under
development since 2008 [8]. The MCStylistic package, free and
cross-platform, supports research into music theory, music
cognition, and stylistic composition, with new versions released
on an approximately annual basis.1 In addition to Stravinsqi,
MCStylistic includes implementations of other algorithms from
the fields of music information retrieval and music psychology,
for tonal and metric analysis [e.g., 9], and for the discovery of
repeated patterns (e.g., motifs, themes, sequences) [10].

A flow diagram outlining the Stravinsqi algorithm is given in
Figure 1. The following aims to be a self-contained overview of
Stravinsqi, while focusing on the differences between this year’s
(Stravinsqi-Jun2015) and last year’s submission (Stravinsqi-
Jun2014) [11]. As indicated in Figure 1, step 1 of Stravinsqi
involves extracting the question string and divisions value from
the question file. Step 2 parses the question string for mention of
bar restrictions, such as “minim in measures 6-10” or “D# in bar
8”, storing this information in a pair, i.e. (6, 10) or (8, 8)
respectively, which will be used later to restrict imported music
representations to certain time intervals. An edited version of the
question string absent the restriction, such as “minim” or “D♯”, is

1 http://www.tomcollinsresearch.net

Copyright is held by the author/owner(s).
MediaEval 2015 Workshop, September 14-15, 2015, Wurzen, Germany.

passed on for subsequent NLP. If no such restriction appears in
the question, then the bar restriction pair is set to nil (empty) and
the question string is unaltered.

Steps 3 and 4 are where the NLP proper begins. One of the
questions from the task description, “two quavers against a minim
in the bass” [12, p. 9], prompted consideration of how synch-
ronous (“against”) and asynchronous (“followed by”) commands
might be combined and interpreted, since “two quavers” would be
converted by Stravinsqi to “quaver followed by quaver”, and so
result in the synchronous/asynchronous combined query of
“quaver followed by quaver against a minim in the bass”. Putting
the “in the bass” suffix to one side, there are two ways that this
query might be interpreted:

1. (quaver followed by quaver) against (a minim);

2. (quaver) followed by (quaver against a minim).

These differing interpretations may correspond to different
types of musical events. In the first instance, both quavers must
sound at the same time as the minim. In the second instance, only
the second quaver needs to sound against the minim. Thinking of
it another way, (1) implies (2), but (2) does not imply (1). Since
there was an implicit followed/against combined question of type
(1) in the task description but not of type (2), Stravinsqi splits
queries by synchronous commands first (step 3) and then further
by asynchronous commands (step 4). The string “two quavers
against a minim” would emerge as (“two quavers” “minim”) from
step 3 in Figure 1, and as ((“quaver” “quaver”) (“minim”)) from
step 4. As another example, “D followed by A against F followed
by F” would emerge as (“D followed by A” “F followed by F”)
from step 3, and as ((“D” “A”) (“F” “F”)) from step 4. An
instance of this query occurs in Figure 2, b.1. In a use-case
scenario, rather than assuming this synchronous/asynchronous
splitting order, it may be preferable to warn a user that their
synchronous/asynchronous query is ambiguous, and to ask which
of the alternatives they mean.

Generalising from examples above such as “D followed by A
against F followed by F”, which is parsed as
((“D” “A”) (“F” “F”)), a question string emerges from step 4 as
some nested list of strings ((s1,1 s1,2 ... s1,n(1)) (s2,1 s2,2 ... s1,n(2)) ...
(sm,1 sm,2 ... sm,n(m))), where each si,j is a query element. Examples
of query elements include “D”, “A♭4 eighth note”, “perfect fifth”,
“melodic interval of a 2nd”, etc.

In step 5, point-set representations of the relevant piece are
loaded. The xml2hum script is used to convert each piece from
its MusicXML format to kern format [13].2 Parser functions in
MCStylistic import the kern file into the Lisp environment, giving
the following representations, known as point sets:

• Instrument/staff and clef names at the beginning of each
staff;

• Time signature specifications (including any changes),
expressed by the bar number where the time signature is
specified or changes, together with the number of beats per
bar, the type of beat, and the corresponding ontime. Ontime
is the incrementing time in staff notation measured in
crotchet beats, with 0 for bar 1 beat 1. A note beginning at
measure 4 beat 1 in a piece with four crotchets per bar has
ontime 12, for example;

• The notes of the piece, each represented by a five-
dimensional point consisting of the ontime of the note, its

2 http://extras.humdrum.org/bin/osxintel64/

MIDI note number (MNN), its morphetic pitch number
(MPN) [10], its duration in crotchet beats, and its numeric
staff number (an integer beginning with zero for the top
staff). MPN is a numeric encoding of staff height, with 60
for C♭4, C♮4, C♯4, 61 for D♭4, D♮4, D♯4, etc. Morphetic
pitch helps to disambiguate MNNs that refer to one of
several pitches depending on the tonal context (e.g., does
61 refer to C♯4 or D♭4?). Setting MNN = 61, if MPN = 60
then the pitch must be C♯4, whereas if MPN = 61 the pitch
must be D♭4. As was discussed in more detail
previously [11], MPN is also useful for identifying intervals
absent diminished, minor, perfect etc. qualifiers: a
morphetic pitch difference of 1 always encodes some type
of 2nd, a difference of 2 always encodes some type of 3rd,
and so on;

• A point-set representation of the piece with three extra
dimensions, one each for articulation, dynamics, and lyrics
information. If, for example, a note is marked staccato, then
the dynamics entry of the point will contain “.”;

• The rests of the piece, each represented by a three-
dimensional point consisting of the ontime of the rest, its
duration, and staff number;

• The notes of the piece that are involved in ties, and the
nature of those ties (e.g., tied from the previous note, tied to
the following note, or both), because this information is not
included in the above-mentioned note point set, but some
questions refer specifically to tied notes;

Start

1. Get string and division

2. Check
bar range

3. Split synchronous
questions – again

4. Split asynchronous
questions – followed b

5. Load point-set
representations

6. Get
elemental
answers

chord-time-intervals
harmonic-interval-of-a
melodic-interval-of-a
. . .
duration&pitch-class-time-intervals
pitch-class-time-intervals
duration-time-intervals
. . .

7. Check
asyn-
chrnous
answers

8. Check
syn-

chronous
answers

9. Convert to re-
quired time format

End

Found

nil

Found

nil

Found

nil

1

Figure 1. Flow diagram for the Stravinsqi-Jun2015
algorithm.

• A texture point set, where each element consists of the time
window where a texture label applies (one of
“monophonic”, “homophonic”, “melody with
accompaniment”, and “polyphonic”), the texture label
itself, and the confidence with which this label applies
(value in [0, 1]).3

After the point sets are loaded, they are restricted to those
points that belong to a certain bar-number range, if a range was
extracted from the question string. MCStylistic utility functions
ontime-of-bar&beat-number and bar&beat-number-
of-ontime, as well the time signature specifications, make
calculating these restrictions relatively straightforward.

Temporarily, in step 6 of Figure 1, each question element si,j
from step 4 is treated independently. A query element si,j is passed
to seventeen music-analytic sub-functions, each of which tests
whether si,j is a relevant query for that function, and, if so,
searches for instances of the query in the piece/excerpt of music.
If the query is irrelevant to a sub-function, that function returns
nil. If the query is relevant but no instances of it are detected,
the function returns either nil or a message string to the effect
“relevant query but no instances detected”. This message string
prevents certain false-positive results begin returned (see below
for an example).

One of the new music-analytic sub-functions this year is
called chord-time-intervals. If the query element does
not contain the word “chord”, this function will return nil. If, on
the other hand, the query element is something like “D major
chord”, “chord E G B”, or “minim chord”, then chord-time-
intervals undertakes further analysis to determine which
pitches and/or durations are to be sought in simultaneities.
Separate functions from the set of seventeen music-analytic sub-
functions (triad-time-intervals and triad-
inversion-time-intervals) handle query elements such
as “V7” or “tonic triad in first inversion”.

Output from each of the music-analytic sub-functions (which
can be time intervals, nil, or a message string) is stored in a list,
with output from more specific functions appearing higher up in
that list than output from more generic functions. For instance,

3 For further discussion of texture identification, as well as the

identification of some other higher-level music-theoretic
concepts, please see subsections 2.3 and 2.4 of [11].

three music-analytic sub-functions are duration&pitch-
class-time-intervals, pitch-class-time-inter-
vals, and duration-time-intervals, with the first of
these being more specific than the second or third. For an element
such as “dotted crotchet G” querying the excerpt in Figure 2,
duration&pitch-class-time-intervals will return
the time interval [5, 6.5), corresponding to the dotted-crotchet G
in the Soprano in b.2. The function duration-time-
intervals will return this time interval, as well as the time
interval [0, 1.5), corresponding to the dotted crotchet in the Tenor
in b.1. The function duration-time-intervals returns
this extra time interval because it does not know that a particular
pitch class is sought. Likewise, the function pitch-class-time-
intervals returns [5, 6.5), as well as [4, 6) (G in Alto, b.2) and
[6, 8) (G in Bass, b.2).

For a query element si,j, the set of time intervals Ti,j belonging
to the first (most specific) function is selected and passed on to
subsequent steps – the set {[5, 6.5)} in our example. Hence, false-
positive results from more generic functions (e.g., [0, 1.5), [4, 6),
[6, 8) in our example) are prevented from being returned. Message
strings along the lines of “relevant query but no instances
detected” help to prevent another kind of false-positive result,
when the excerpt in Figure 2 is queried with elements such as “B
dotted crotchet”. There is no dotted-crotchet B in this excerpt, so
duration&pitch-class-time-intervals ought on first
glance to return nil. There are, however, separate instances of
the pitch-class B in Figure 2, as well as dotted crotchets, meaning
both pitch-class-time-intervals and duration-
time-intervals will return false-positive results. To prevent
these false-positives propagating to subsequent steps (and
eventually harming the algorithm’s precision), the function
duration&pitch-class-time-intervals outputs a
message string rather than nil. The message indicates that the
query was relevant to the function but that no instances were
detected. The presence of a message string in more specific
functions (duration&pitch-class-time-intervals) is
used as a predicate for nullifying (removing) time intervals output
by related, more generic functions (pitch-class-time-
intervals and duration-time-intervals).

The output of step 6 is a nested list of time-interval sets,
((T1,1 T1,2 ... T1,n(1)) (T2,1 T2,2 ... T1,n(2)) ... (Tm,1 Tm,2 ... Tm,n(m))), one
for each query element si,j, some of which may be empty. The
purpose of steps 7 and 8 is to determine whether any
combination(s) of these time intervals satisfy the constraints
imposed by various synchronous and asynchronous parts of the
question string. Stravinsqi will allow any plausible sequence of
time intervals τ1 ∈ Tk,1, τ2 ∈ Tk,2,…, τn(k) ∈ Tk,n(k) to be passed on
for further processing. For time-interval sets Tk,1 Tk,2 ... T1,n(k),
there may be l(k) such plausible sequences. Two time intervals [a,
b] and [c, d] are considered plausible if the original query contains
“followed by” and they are adjacent (b = c), or if the original
query contains, say, “followed three bars later by” and c − b is the
appropriate distance apart. A plausible sequence of time intervals
τ1 = [a1, b1], τ2 = [a2, b2],…, τn(k) = [an(k), bn(k)] is merged into one
time window U = [a1, bn(k)] and passed to step 8.

The input to step 8 is a nested list of merged time intervals
((U1,1 U1,2 ... U1,l(1)) (U2,1 U2,2 ... U1,l(2)) ... (Um,1 Um,2 ... Um,l(m))),
such that Ui,j is the jth merged time interval for the ith part of a
question string containing m synchronous parts. A useful way to
think of the time intervals Ui,j is arranged as a jagged two-
dimensional array (table) with m rows and l(i) columns in row i.
If, visiting each row precisely once, there exists some column

Figure 2. Bars 1-2 of ‘Ave Maris Stella’ from Vespro
della Beata Vergine (1610) by Claudio Monteverdi (1567-

1643).

index j(i) such that the intersection of the corresponding intervals
U1,j(1), U2,j(2),…, Um,j(m) is nonempty, then v = ∩i=1,2,…,m Ui,j(i) is a
time interval output by step 8. There may be none, one, or several
such distinct time intervals, v1, v2,…, vr.

The “Found” and “nil” labels attached to arrows emanating
from steps 6, 7, and 8 in Figure 1 indicate how the presence or
absence of time intervals emerging from these steps can propagate
to a final output time interval. Supposing, for instance, that the
question string is “D followed by A against F followed by F” but
that no pitch-class D appears in the piece. Then there is nil for at
least one of the sets output by step 6, which means there is nil
for at least one of the time intervals output by step 7, which means
that a nonempty intersection of time intervals does not exist in
step 8, and so no answer passages are returned.

The final step of Stravinsqi, labeled Step 9 in Figure 1,
comprises the conversion of the time intervals v1, v2,…, vr into the
XML format required by the task. Again, the MCStylistic function
bar&beat-number-of-ontime is helpful here.

2.2 Procedure
In the overview paper for the task [1], Stravinsqi is labelled

DMUN03. The differences between this run and the other
submitted runs (DMUN01 and DMUN02) are not remarkable –
suffice it to say we manipulated the use of the divisions value for
answering synchronous questions, to investigate its effect on
precision. As the xml2kern script is becoming increasingly out
of date, the majority of the test week was spent converting the
MusicXML files to kern files, if necessary re-encoding the files to
correct sources of errors. The test data was opened in order to
check for any knock-on effects of these error corrections, but no
post-check alterations were made to the Stravinsqi algorithm.
Naturally, in the last two weeks we have looked through the test
questions in more detail, so as to make relevant comments here.

3. RESULTS
The evaluation is based on four metrics: measure recall

(U.K., bar recall), measure precision, beat recall, and beat
precision. If, for a given question, an algorithm returns k of the m
correct beginning and ending bar number pairs at which the
queried event occurs, then its measure recall for this question is
k/m. If it returns n incorrect beginning/ending bar number pairs
also, then its measure precision is k/(m + n). Beat recall and
precision are defined similarly, where the algorithm must be
correct not only up to bar numbers, but up to the exact beat
numbers as well.

Figure 3 contains a summary of results for the Stravinsqi
algorithm across various question categories. The mean measure
recall across all 200 questions, indicated by the black line next to
the “Mean” label, is .794, and the mean measure precision,
indicated by the blue line, is .316. The mean beat recall (green
line) and beat precision (red line) are both slightly lower than their
measure counterparts (.739 and .294 respectively), but in general
it can be assumed that if Stravinsqi returned the correct
beginning/ending measure number pairs for a question, then it was
also able to identify the relevant beats. Stravinsqi had the highest
measure and beat recall of any algorithm submitted to the 2015
C@merata task [1] and the third highest measure and beat F1
score (F1 = 2PR/(P + R), where P is precision and R is recall).

Across eight of the eleven question categories shown in
Figure 3 (Melody 1, Melody n, Harmony, Articulation,
Instrument, Clef, Follow, and Synch), Stravinsqi achieves
consistently high recall of approximately .75. For the remaining
three categories (Time Sig., Key Sig., and Texture) it is less
successful. Overall, the results suggest the need to investigate

Stravinsqi’s precision being lower than its recall, so we will
address and exemplify some issues now.

We have not yet incorporated in Stravinsqi restrictions to
notes occurring after particular clef, time signature, or key
signature changes. A query such as “G4 in the key of G major”,
which does not occur in Figure 2, say, would be parsed instead as
“G4”, which does occur in Figure 2. Sometimes, therefore, the
recall of Stravinsqi remains high for such questions, but the
precision will be negatively impacted.

The design of Stravinsqi is motivated more by music-
perceptual than typographical concerns, based on the premise that
music is primarily an auditory-cognitive phenomenon, and a
visuo-cognitive phenomenon secondarily. When music perception
and music theory collide, as they do occasionally in the
C@merata task and beyond [14], Stravinsqi's precision can be
adversely affected. According to the task description, consecutive
elements “must both be on the same stave” [12, p. 7]. So if we
were to query the excerpt in Figure 2 with the question “D
followed by A”, then the only valid answer would correspond to
the D followed by A in b.1 of the Soprano. If the D appeared in
some other staff (a swap with the Alto F, say), the answer would
no longer be valid according to the task description, due to the
typographical alteration. Even so, the altered and original excerpts
may sound indistinguishable. Stravinsqi would still return an
answer for this altered version, however, since being motivated by
music-perceptual concerns (i.e., how the music sounds), it does
not require consecutive question elements to be on the same staff.
It would return a second answer also corresponding to the quaver
D of the Tenor followed by the minim A of the Soprano in b.1.
When music perception and music theory collide in this fashion,
Stravinsqi tends to find the correct answers according to the task
description, but also some extra answers that involve elements on
different staves, which has a detrimental effect on its precision.

Beyond precision issues, it is possible to use Stravinsqi’s
performance on specific questions to make some inferences about
potential inconsistencies between the task description/training
collection, and test collection. Chord identification (e.g., “chord of
E G B” as separate from Roman-numeral analysis) was new this
year, falling under the harmony category. For Question 58, “chord
of D minor in measures 109-110”, for piece 6, the second
movement from String Quartet in F major op.18 no.1 by Ludwig

0.25 0.5 0.75 1
Mean0.25

0.5

0.75

1

Melody 1

0.25

0.5

0.75

1

Melody n

0.25

0.5

0.75

1
Harmony

0.25

0.5

0.75

1Articulation

0.25

0.5

0.75

1Instrument

0.250.50.751

Clef 0.25

0.5

0.75

1

Time Sig.

0.25

0.5

0.75

1

Key Sig.

0.25

0.5

0.75

1

Follow

0.25

0.5

0.75

1

Synch

0.25

0.5

0.75

1 Texture

Measure Recall
Measure Precision
Beat Recall
Beat Precision

Figure 3. Results of the Stravinsqi-Jun2015 algorithm
on the MediaEval 2015 C@merata task. Overall results
are indicated by the mean label, and followed by results

for eleven question categories.

van Beethoven (1770-1827), Stravinsqi scored maximally on all
metrics. It was necessary for the chord identification algorithm to
look across all four parts (Violin I, Violin II, Viola, and Cello) to
retrieve notes fitting the requested D-minor chord template, and
there were two such chords in b.110. For Question 127, “quarter
note chord D3 A3 C4”, for piece 13, the first movement from
Piano Sonata in C major K545 by Wolfgang Amadeus Mozart
(1756-1791), Stravinsqi scored zero on all metrics. There is a
quarter-note chord of D3, A3, C4 in the left hand on the final beat
of b.27, but, as with Question 58, Stravinsqi’s chord identification
algorithm looked across all parts (i.e., the right hand also) because
the question did not specify “in the left hand” or “in the bass clef”.
In the right hand against the quarter-note chord are four
semiquavers, C5, A4, F♯4, A4, which means that across all parts,
there is no quarter-note chord but rather four chords each lasting a
semiquaver, where some notes are held over from/to
previous/succeeding simultaneities: (1) D3, A3, C4, C5; (2) D3,
A3, C4, A4; (3) D3, A3, C4, F♯4; (4) same as (2). The task
description stated, “no other notes must be sounding” apart from
those pitch classes specified in the chord, but it was not clear
whether this applied to pitch and octave specifications also.

4. DISCUSSION AND CONCLUSIONS
As per last year, the C@merata task description [12] was

helpful and the training/test data provided a springboard for
interesting research, reflecting a considerable amount of time and
effort on the part of the organisers. The following comments are
not intended as criticisms of the task, but as ideas for guiding the
task in future years, to ensure it remains relevant as a basis for
cutting-edge research at the intersection of music theory, music
psychology, music computing, and NLP.

4.1 Arpeggio and Scale
For the first time this year, the C@merata task included

queries relating to arpeggios and scales. These queries, like
cadence, triad, and texture questions last year, refer to inherently
fuzzy concepts (as opposed to queries such as “crotchet A♭4” or
“fermata minim”, where answers are either definitely right or
definitely wrong). We devote some space to discussing definitions
and examples of arpeggios and scales, therefore, since future
iterations of the C@merata task might involve additional
instances of similarly complex concepts, and these need to be
incorporated in a music-theoretically appropriate manner.

The generally accepted definition of arpeggio is the
“sounding of the notes of a chord in succession rather than
simultaneously” [15]. The definition of arpeggio given in the task
description is a sequence of at least three notes, all ascending or
all descending, and “for simplicity, each note is defined to be
separated from the previous one by a third (major or minor) or a
fourth (perfect)” [12, p. 4]. The definition includes further,
auxiliary remarks about accidentals, which are inherited from a
preceding definition of scale. It is not clear whether other parts of
the scale definition should be inherited also (e.g., the sequence of
notes should “not contain any rests”). There are numerous
examples of scales and arpeggios that contain rests: for instance,
Figure 4 b.47 contains a C-major arpeggio in the piano left hand,
C2, E2, G2, C3, followed by an F-major arpeggio, where notes
are separated by rests. Specifying that the sequence of notes in a
scale or arpeggio should not contain rests might not lead to an
appropriate definition in general.

The most significant way in which the accepted and
C@merata definitions of arpeggio diverge is in the former’s
mention of “notes of a chord” and the latter’s reliance on melodic
intervals of a third or fourth. One realisation of a C7 arpeggio is

C2, E2, G2, B♭3, C3. The interval between the final two notes
here is a second, so it does not conform to the C@merata
definition, although it is an arpeggio. According to the accepted
definition, a serviceable arpeggio-identifying algorithm needs to
build on a successful chord identification algorithm, rather than
trying to identify arpeggios in terms of melodic intervals. Future
C@merata questions might aim to reward the development of
successful chord and triad identification algorithms, in the
presence and absence of non-chord tones, as this would fill a gap
in existing research. The current approach, of sidestepping this
research gap and defining a complex concept in terms of other
properties, might not provide the strongest basis for future
research.

The generally accepted definition of scale is a sequence of
notes, all ascending or all descending, “long enough to define
unambiguously a mode, tonality, or some special linear
construction, and that begins and ends (where appropriate) on the
fundamental note of the tonality or mode” [16]. The definition of
scale given in the task description also began by stipulating an all-
ascending or all-descending sequence of notes, adding that it must
“consist of contiguous notes of the scale and not contain any rests.
No note is repeated unless we reach the octave. However, a scale
does not need to be a complete octave. For simplicity we will say
that each note in the scale will not carry an accidental except from
the key signature. This will effectively make all scales either
major or natural minor. So C D E F G is a scale (C major) and A
B C D is a scale (A minor)” [12, p. 4]. An issue with the
C@merata definition is that the scale does not have to begin on
the fundamental note, so while the pitch-classes C, D, E, F, G
belong to the C major scale, they belong also to A natural minor,
F major, and D natural minor. Disqualifying note sequences that
contain accidentals might also lead to an inappropriate definition.
For example, the opening four pitch classes in Figure 5, C, B♭,
A♭, G♮, would be disqualified since G♮ does not appear in the
key signature, but otherwise they begin on C and proceed to
define C natural minor. According to the accepted definition, a
serviceable scale-identifying algorithm needs to build on an
algorithm for identifying segments that unambiguously define a
mode, tonality, or some special linear construction, rather than
trying to identify scales in terms of contiguous, non-accidental
notes. Again, future C@merata questions might aim to reward the
development of such supporting algorithms, as this would fill a
gap in existing research.

To add weight to our observation above that some concepts
are inherently fuzzy, the pitch classes of b.351-352.1 in Figure 5
unambiguously define the scale of E♭ major or C natural minor.
This ten-pitch-class sequence begins but does not end on C,
however, so according to the accepted definition (“begins and
ends on the fundamental note”), it can be neither E♭ major nor C

Figure 4. Bars 47-48 of the first movement from
Arpeggione Sonata in A minor D821 by Franz Schubert

(1797-1828).

natural minor. Furthermore, only seven of the nine intervals
descend, with one upward inflection between G♮ and A♭ and one
repeated note, which contradicts both definitions’ specifications of
all ascending or all descending notes. Many listeners would still
say that b.351 in Figure 5 sounds scalic, however, even if it does
not conform to all criteria. Bars 352-353, while also scalic, are
more complicated still, with Tchaikovsky delineating a set of nine
pitch classes that are not modal, tonal, or linear in construction.

Although we did not include it in this year’s submission, we
implemented a proof-of-concept algorithm with the aim of
identifying both arpeggios and scales. Our motivation was to
scrutinise the task definitions of arpeggio and scale more
thoroughly, and to lay the groundwork for future C@merata
question categories that also comprise more complex musical
concepts. One algorithm, with one small alteration, seemed to
capture arpeggio and scale concepts, which is perhaps not
surprising since both can be considered sequential musical
structures. Although their identification might be achieved via the
use of composite queries (i.e. “C4 followed by E4 followed by
G4” is one realisation of a C-major arpeggio), we formed a
hierarchical set of rules according to the task description [12],
leading to the definition of a more generic results space.

The proof-of-concept algorithm does not incorporate NLP,
but instead searches for note sequences that adhere to specific
rules, which at the moment are not available for parameterisation.
In addition to the C@merata definitions for these concepts, some
additional assumptions were made to simplify the process. During
note import, only single notes (i.e. neither rests nor chords) from
each staff are taken into consideration. This assumption, that a
sequential structure is monophonic, simplifies the identification
processes, as otherwise voice segregation procedures have to be
considered [17]. The left-hand red notes in bar 17 of Figure 6
illustrate such a case arising from the repetition of a chord, where
if the chords were to be segregated into their constituent notes,
this would result in many identifiable – but nonetheless
perceptually false or very difficult to hear – arpeggios. In addition,
the ascending movement of inversions of the same chord in the
right hand would result in four different arpeggios (indicated by
four different colours in Figure 6), where a more precise answer
here indicating only one arpeggio might suffice.

The algorithm, which is implemented in music21 [5],
considers each note only once, using a dynamic data structure that
we refer to as a trail list. Notes that comply with the rules for a
sequence type (arpeggio or scale) are aggregated into the trail list.
For a given note ni , and N = (ni – j ni – j + 1 … ni – 1) an existing trail
list, the algorithm goes through the series of rules that build up the
sequence type. Failure at any point of this rule series causes the
existing trail list N to be output, if j is sufficiently large. The
dynamic trail list is emptied, Nʹ = (), since the sequence cannot be
continued, and if the current note ni that breached a rule is scale-
valid then it is added as the first element of the new trail list,
Nʹ = (ni). The rule series is the same for both arpeggios and scales
– the only difference being in the values associated with
permissible intervals between adjacent notes. This is a preliminary
approach to the identification of sequential structures, which
helped us to interrogate some aspects of the arpeggio and scale
definitions, and we will aim to incorporate it into the Stravinsqi
algorithm for next year.

4.2 Conclusion
This paper has provided an overview of the Stravinsqi-

Jun2015 algorithm, and described its performance on the 2015
C@merata task. Stravinsqi achieved high recall (approximately
.75) in eight of the eleven question categories, and had the highest

measure and beat recall of any algorithm submitted to the task [1].
Its measure and beat F1 score was third highest overall, inviting
investigation of potential issues with the algorithm’s precision.
Some of these issues were addressed and exemplified in section 3,
but further analysis of the results is required to determine whether
Stravinqi’s precision can be improved while adhering to our
general design principle of favouring music-perceptual over
typographical concerns. That is, music is heard as well as seen, so
if “D followed by A” occurs in terms of sonic events but not in
terms of the staff notation (e.g., these pitch classes do follow one
another but not in the same staff), then this passage should still be
amongst the answers.

In the introduction, it was remarked that there is a line
connecting the types of queries being set in the C@merata task
and the examination questions that students of the Western
classical tradition are taught to answer. Five examples of such
examination questions were provided. This year, C@merata
queries happened to overlap with part of examination question 2
(pedal) and fully with examination question 4 (lyric plus melodic
interval). Unlike last year, however, this year’s C@merata test set
was lacking cadence and functional harmony queries, which
would have overlapped with examination questions 3 and 5
respectively. We perceived a general tendency to replace
musically interesting questions (e.g., concerning cadence, triad,
hemiola, ostinato, sequence, etc.) with questions that were
linguistically challenging to parse but of less musical relevance
(e.g., Question 130, “fourteen sixteenth notes against a whole note
chord in the bass”). Next year, we would welcome the
reintroduction of more musically interesting (if complex) question
categories, to reestablish and strengthen the line that connects
C@merata queries with concepts that are relevant for music
students and enthusiasts.

5. REFERENCES
[1] Sutcliffe, R. F. E., Fox, C., Root, D. L., Hovy, E, and Lewis,

R. 2015. The C@merata Task at MediaEval 2015: Natural
language queries on classical music scores. In MediaEval
2015 Workshop, Wurzen, Germany, September 14-15, 2015.
http://ceur-ws.org.

Figure 5. Bars 351-353 of the first movement
from Piano Concerto no.1 in B♭ major op.23 by

Pyotr Ilyich Tchaikovsky (1840-1893).

Figure 6. Bars 16-18 of the first movement from
Piano Sonata no.23 in F minor op.57 by Beethoven. The

highlighted notes in the right hand indicate four
arpeggios; in the left hand, one arpeggio among the

repeated chord.

[2] Kena, G, et al. 2015. The Condition of Education 2015. U.S.
Department of Education, Washington, DC. Retrieved June
4, 2015 from http://nces.ed.gov/pubsearch.

[3] Eagan, K, et al. 2014. The American Freshman: National
Norms Fall 2014. Higher Education Research Institute,
UCLA, Los Angeles, CA. Retrieved March 15, 2015 from
http://www.heri.ucla.edu.

[4] AQA. 2012. Music in Context: Past Paper for A-level Music
Unit 4. AQA, Manchester, UK. Retrieved January 13, 2014
from http://www.aqa.org.uk.

[5] Cuthbert, M. S., and Ariza, C. 2010. music21: a toolkit for
computer-aided musicology and symbolic music data. In
Proceedings of the International Symposium on Music
Information Retrieval (Utrecht, The Nethlerands, August 09 -
13, 2010). 637-642.

[6] Collins, T., Laney, R., Willis, A, and Garthwaite, P. H. 2015.
Developing and evaluating computational models of musical
style. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing. DOI: 10.1017/S0890060414000687

[7] van Herwaarden, S., Grachten, M, and de Haas, W. B. 2014.
Predicting expressive dynamics in piano performances using
neural networks. In Proceedings of the International
Symposium on Music Information Retrieval (Taipei, Taiwan,
October 27 - 31, 2014). 47-52.

[8] Collins, T. 2011. Improved Methods for Pattern Discovery in
Music, with Applications in Automated Stylistic Composition.
Doctoral Thesis. Faculty of Mathematics, Computing and
Technology, The Open University.

[9] Volk, A. 2008. The study of syncopation using inner metric
analysis: linking theoretical and experimental analysis of
metre in music. J. New Music Res. 37, 4, 259-273.

[10] Meredith, D., Lemström, K., and Wiggins, G. A. 2002.
Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music.
J. New Music Res. 31, 4, 321-345.

[11] Collins, T. 2014. Stravinsqi/De Monfort University at the
C@merata 2014 task. Proceedings of the C@merata Task at
MediaEval 2014.

[12] Sutcliffe, R., Fox, C., Root, D. L., Hovy, E, and Lewis, R.
2015. Task Description v2: C@merata 15: Question
Answering on Classical Music Scores. Retrieved June 4,
2015 from http://csee.essex.ac. uk/camerata.

[13] Sapp, C. S. 2013. Humdum Extras. Retrieved March 3, 2014
from http://wiki.ccarh.org/wiki/Humdrum_Extras.

[14] Cook, N. 1994. Perception: a perspective from music theory.
In Musical perceptions, R. Aiello and J. A. Sloboda, Eds.
Oxford University Press, Oxford, UK, 64-95.

[15] Franklin, T. 2015. Arpeggio/arpeggiation. In Oxford Music
Online. Retrieved June 4, 2015 from
www.oxfordmusiconline.com.

[16] Drabkin, W. 2015. Scale. In Oxford Music Online. Re-
trieved June 4, 2015 from www.oxfordmusiconline.com.

[17] Cambouropoulos, E. 2008. Voice and stream: perceptual and
computational modeling of voice separation. Music
Perception. 26, 1, 75-94.

